Dossier: The Fischer-Tropsch Process
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 64, Numéro 1, January-February 2009
Dossier: The Fischer-Tropsch Process
Page(s) 25 - 48
DOI https://doi.org/10.2516/ogst/2008050
Publié en ligne 19 février 2009
  • Khodakov A.Y.,Chu W.,Fongarland P. (2007) Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels, Chem. Rev. 107, 1692-1744. [CrossRef] [PubMed] [Google Scholar]
  • Iglesia E. (1997) Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts, Appl. Catal. A-Gen. 161, 59-78. [CrossRef] [Google Scholar]
  • Dry M. (2002) The Fischer-Tropsch process: 1950-2000, Catal. Today 71, 227-241. [CrossRef] [Google Scholar]
  • Chernavskii P.A.,Lunin V.V. (1993) Oxide-oxide interaction in Ni, Co, and Fe supported catalysts, Kinet. Catal.+ 34, 470-477. [Google Scholar]
  • http://www.iupac.org/goldbook/T06395.pdf. [Google Scholar]
  • Selwood P.W. (1975) Chemisorption and Magnetization, Academic Press, New York. [Google Scholar]
  • Richardson J.T. (1978) Magnetism and catalysis, J. Appl. Phys. 49, 1781-1786. [CrossRef] [Google Scholar]
  • Dalmon J.-A. (1994) Catalysts Characterization, Physical Techniques for Solid Materials, Plenum, New York, pp. 585-609. [Google Scholar]
  • Weiss P.,Forrer R. (1926) Magnetization and Magnetocaloric Phenomena of Nickel, Ann. Phys. 5, 153-213. [Google Scholar]
  • Foner S. (1959) Versatile and Sensitive Vibrating-Sample Magnetometer, Rev. Sci. Instrum. 30, 548-557. [CrossRef] [Google Scholar]
  • Chernavskii P.A. (2001) Topochemical processes in metal supported catalysts, Dr. Sci. thesis, Moscow State University. [Google Scholar]
  • Petrov Y.I. (1982) Physics of small particles, Moscow, Nauka, p. 327. [Google Scholar]
  • Frenkel J.,Dorfman J. (1930) Spontaneous and Induced Magnetisation in Ferromagnetic Bodies, Nature 126, 274-275. [CrossRef] [Google Scholar]
  • Kondorskii E.I. (1952) On the theory of single-domain particles, Doklady Academii Nauk SSSR 82, 365-368. [Google Scholar]
  • Kondorskii E.I. (1978) Micromagnetism and remagnetization of quasi-single-domain particles, Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya 42, 8, 1638-1645. [Google Scholar]
  • Brown W. F. Jr. (1963) Micromagnetics, Wiley-Inter., N.Y. [Google Scholar]
  • Kneller E. (1969) In Magnetism and Metallurgy, Academic Press, N.Y., Vol. 1, p. 365. [Google Scholar]
  • Sort J.,Suriñach S.,Muñoz J.S.,Baró M.D.,Wojcik M.,Jedryka E.,Nadolski S.,Sheludko N.,Nogués J. (2003) Role of stacking faults in the structural and magnetic properties of ball-milled cobalt, Phys. Rev. B 68, 014421, 7 p. [CrossRef] [Google Scholar]
  • Pelecky D.L.,Rieke D.R. (1996) Magnetic Properties of Nanostructured Materials, Chem. Mater. 8, 1770-1783. [CrossRef] [Google Scholar]
  • Stoner E.C.,Wohlfarth E.P. (1948) A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys, Philos. T. Roy. Soc. A 240, 599-642. [CrossRef] [Google Scholar]
  • Chen C.,Kitakami O.,Shimada Y.J. (1998) Particle size effects and surface anisotropy in Fe-based granular films, J. Appl. Phys. 84, 2184-2188. [CrossRef] [Google Scholar]
  • Neel L.C.R. (1949) Influence des fluctuations thermiques a l'aimantation des particules ferromagnétiques, C. R. Hebd. Seances Acad. Sci. 228, 664-668. [Google Scholar]
  • Weil L. (1954) Structure of catalysts and ferromagnetic properties at very low temperatures, J. Chim. Phys. Physico-Chimie Bio. 51, 715-717. [CrossRef] [EDP Sciences] [Google Scholar]
  • Wohlfarth E.P. (1980) The magnetic field dependence of the susceptibility peak of some spin glass materials, J. Phys. F: Met. Phys. 10, L241-L246. [CrossRef] [Google Scholar]
  • Bean C.P.,Livingston J.D. (1959) Superparamagnetism, J. Appl. Phys. 30, S120-S129. [CrossRef] [Google Scholar]
  • Chen J.P.,Sorensen C.M.,Klabunde K.J. (1995) Enhanced magnetization of nanoscale colloidal cobalt particles, Phys. Rev. B 51, 11527-11532. [CrossRef] [Google Scholar]
  • Billas M.L.,Chatelain A., de Herr W.A. (1994) Magnetism from the Atom to the Bulk in Iron, Cobalt, and Nickel Clusters, Science 265, 1682-1684. [CrossRef] [PubMed] [Google Scholar]
  • Sohl H.,Bertram H.N. (1997) Localized surface nucleation of magnetization reversal, J. Appl. Phys. 82, 6128-6137. [CrossRef] [Google Scholar]
  • Primet M.,Dalmon J.A.,Martin G.A. (1977) Adsorption of CO on well-defined Ni/SiO2 catalysts in the 195-373 K range studied by infrared spectroscopy and magnetic methods, J. Catal. 46, 25-36. [CrossRef] [Google Scholar]
  • Martin G.A. (1981) Détermination des tailles de particules métalliques et de leur distribution en catalyse hétérogène, Rev. Phys. Appl. 16, 181-192. [CrossRef] [EDP Sciences] [Google Scholar]
  • Estournes C.,Lutz T.,Happich J.,Quaranta T.,Wissler P.,Guille J.L. (1997) Nickel nanoparticles in silica gel: Preparation and magnetic properties, J. Magn. Magn. Mater. 173, 83-92. [CrossRef] [Google Scholar]
  • Richardson J.T.,Desai P. (1976) Ultrahigh magnetic field measurements of nickel crystallite size distributions, J. Catal. 42, 294-302. [CrossRef] [Google Scholar]
  • Potton J.A.,Daniell G.J.,Eastop A.D.,Kitching M.,Melville D.,Poslad S.,Rainford B.D.,Stanley H. (1983) Ferrofluid particle size distributions from magnetisation and small angle neutron scattering data, J. Magn. Magn. Mater. 39, 95-98. [CrossRef] [Google Scholar]
  • Skilling J.,Bryan R.K. (1984) Maximum-entropy image-reconstruction – general algoritm, Mon. Not. R. Astron. Soc. 211, 111. [NASA ADS] [CrossRef] [Google Scholar]
  • Zolla H.G.,Spaepen F. (1995) Size distribution of Ni precipitates in Ag-Ni alloys determined by maximum entropy analysis of magnetization curves, Mater. Sci. Eng. A 204, 71-75. [CrossRef] [Google Scholar]
  • Attila Kákay,Gutowski M.W.,Takacs L.,Franco V.,Varga L.K. (2004) Langevin granulometry of the particle size distribution, J. Phys. A: Math. Gen. 37, 6027-6042 [CrossRef] [Google Scholar]
  • Lermontov A., Dalmon J.-A., Miachon S., van Berge P.J., van de Loosdrecht J. (2002) TEM and magnetic characterization of well-dispersed Co/SiO2 catalysts. Abstract CATSA 2002. [Google Scholar]
  • De Montgolfier P.,Martin G.A.,Dalmon J.-A. (1973) Granulometry and metallic mass of finely divided ferromagnetic catalyzers calculated using magnetization/magnetic field curves, J. Phys. Chem. Solids 34, 801-812. [CrossRef] [Google Scholar]
  • Dalmon J.-A.,Martin G.,Imelik B. (1973) Basic silicate of cobalt tale and antigorite – synthesis, morphologie, thermal decomposotion and reduction by hydrogen- granulometric study of cobalt on silica catalysts thus obtained, J. Chim. Phys. Physico-Chimie Bio 70, 214-224. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kokorin V.V.,Perekos A.E.,Chuistov K.V. (1977) Magnetostatic interaction of ferromagnetic phase particles in non-ferromagnetic matrix, Fizika Metallov i Metallovedenie 43, 966-971. [Google Scholar]
  • Venttsel E.C., Ovcharov L.A. (1969) Theory of probability, Moscow, Nauka, p. 364. [Google Scholar]
  • Chernavskii P.A. (2005) Preparation of Fischer-Tropsch catalysts, Kinetics Catal. 46, 634-640. [CrossRef] [Google Scholar]
  • Perov N.S.,Sudarikova N.Yu.,Bagrets A.A. (2003) The magnetic properties of the systems of the ultra-fine particles, J. Magn. (Korean Magn. Soc.) 8, 1, 7-12. [Google Scholar]
  • Perov N.S., Radkovskaya A.A. (2000) A Vibrating Sample Anisometer, Proceeding of 1 & 2 Dimensional Magnetic Measurement and Testing, 20-21 Sept. 2000, Bad Gastein, ISBN 3-902105, p. 104. [Google Scholar]
  • Yakushiji K.,Mitani S.,Takanashi K.,Ha J.-G.,Fujimori H. (2000) Composition dependence of particle size distribution and giant magnetoresistance in Co-Al-O granular films, J. Magn. Magn. Mater. 212, 75-81. [CrossRef] [Google Scholar]
  • Weissmuller J.,Michels A.,Barker J.G.,Wiedenmann A.,Erb U.,Shull R.D. (2001) Analysis of the small-angle neutron scattering of nanocrystalline ferromagnets using a micromagnetics model, Phys. Rev. B 63, 2144141-21441418. [CrossRef] [Google Scholar]
  • Brown W.F. Jr. (1969) The fundamental theorem of the theory of fine ferromagnetic particles, Ann. NY Acad. Sci. 147, 463-488. [CrossRef] [Google Scholar]
  • Dormann J.L., Fiorani D,Tronc E. (1997) Magnetic relaxation in fine-particle systems, Adv. Chem. Phys. 98, 283-494. [Google Scholar]
  • Dalmon J.-A.,Martin G.A.,Imelik B. (1974) Adsorptions de H2 et de O2 sur des alliages Ni—Cu divisés supportés sur SiO2, etudiées par mesure d'aimantation à saturation, Surf. Sci. 41, 587-590. [CrossRef] [Google Scholar]
  • Selwood P.W. (1975) Chemisorption and Magnetization, Academic Press, New York. [Google Scholar]
  • Martin G.A.,Imelik B. (1974) Adsorption of hydrocarbons and various gases on Ni-SiO2 catalysts studied by high field magnetic methods, Surf. Sci. 42, 157-172 [CrossRef] [Google Scholar]
  • Dalmon J.-A.,Primet M.,Martin G.A.,Imelik B. (1975) Magnetic and infrared study of CO chemisorption on silica supported nickel-copper alloys, Surf. Sci. 50, 95-108. [CrossRef] [Google Scholar]
  • Reuel R.C.,Bartholomew C.H. (1984) The stoichiometries of H2 and CO adsorptions on cobalt: Effects of support and preparation, J. Catal. 85, 63-77. [CrossRef] [Google Scholar]
  • Zowtiak J.M.,Bartholomew C.H. (1983) The kinetics of H2 adsorption on and desorption from cobalt and the effects of support thereon, J. Catal. 83, 107-120. [CrossRef] [Google Scholar]
  • Abeledo C.R.,Selwood P.W.J. (1962) Chemisorption of hydrogen on cobalt, J. Chem. Phys. 37, 2709. [CrossRef] [Google Scholar]
  • Dalmon J.-A.,Martin G.A.,Imelik B. (1974) Adsorption of H2 on Ni-Cu alloys studied by magnetic measurements, Jpn. J. Appl. Phys. Suppl. 2, Part 2, 261-264. [Google Scholar]
  • Dumesic J.A.,Topsoe H.,Boudart, M. (1975) Surface, catalytic and magnetic properties of small iron particles: III. Nitrogen induced surface reconstruction, J. Catal. 37, 513-522. [CrossRef] [Google Scholar]
  • Dutartre R.,Bussière P.,Dalmon J.-A.,Martin G.A. (1979) Activation of hydrogen on Fe/MgO catalysts studied by magnetic methods and Mössbauer spectroscopy, J. Catal. 59, 383-394 [CrossRef] [Google Scholar]
  • Chernavskii P.A.,Kiselev V.V.,Kuprin A.P.,Grechenko A.N.,Baranaova L.I.,Lunin V.V. (1991) Characteristics of hydrogen reduction of iron-oxide applied on silica-gel, Russ. J. Phys. Chem. 65, 1675-1679. [Google Scholar]
  • Chernavskii P.A.,Kiselev V.V.,Lunin V.V. (1992) Mechanism of the reduction of iron-oxides applied on silica gel, Russ. J. Phys. Chem. 66, 2712-2718. [Google Scholar]
  • Chernavskii P.A.,Pankina G.V.,Zavalishin I.N.,Lunin V.V. (1994) The kinetics of reduction of iron oxides supported on SiO2, Al2O3, ZrO2 by hydrogen, Kinetics Catal. 35, 111-113. [Google Scholar]
  • Chernavskii P.A.,Pankina G.V.,Lunin V.V. (1998) Temperature-programmed reduction of Fe2O3/Al2O3 and Pt/Fe2O3/Al2O3 catalysts, Russ. J. Phys. Chem. 72, 2086-2088. [Google Scholar]
  • Wielers A.F.H.,Kock A.J.H.M.,Hop C.E.C.A.,Geus J.W., van der Kraan A.M. (1989) The reduction behavior of silica-supported and alumina-supported iron catalysts: A Mössbauer and infrared spectroscopic study, J. Catal. 117, 1-18. [CrossRef] [Google Scholar]
  • Wang C.J.,Ekerdt J.G.J. (1983) Study of Fischer-Tropsch synthesis over Fe/SiO2: Reactive scavenging with pyridine and cyclohexene, J. Catal. 80, 172-187. [CrossRef] [Google Scholar]
  • Amelse J.A.,Butt J.B.,Schwartz L.H.J. (1978) Carburization of supported iron synthesis catalysts, J. Phys. Chem. 82, 558-563. [CrossRef] [Google Scholar]
  • Rozovskii A.Y. (1989) Heterogeneous catalytic reactions: Kinetics and macrokinetics, Moscow, Nauka, p. 323. [Google Scholar]
  • Bartolomew C.H. (1988) Hydrogen effect in catalysis. Fundamental and practical applications. Role of hydrogen in CO hydrogenation, Dekker, Basel, NY, p. 543. [Google Scholar]
  • Matsumoto H.,Bennett C.O. (1978) The transient method applied to the methanation and Fischer-Tropsch reactions over a fused iron catalyst, J. Catal. 53, 331-344. [CrossRef] [Google Scholar]
  • Loktev S.M.,Makarenkova L.I.,Slivinskii E.V.,Entin S.D. (1972) Thermomagnetic analysis of fused iron catalysts for synthesis of higher alcohols from carbon monoxide and hydrogen, Kinetics Catal. 13, 1042-1049. [Google Scholar]
  • Niemantsverdriet J.W., van der Kraan A.M., van Dijk W.L., van der Baan H.S. (1980) Behavior of metallic iron catalysts during Fischer-Tropsch synthesis studied with Moessbauer spectroscopy, X-ray diffraction, carbon content determination, and reaction kinetic measurements, J. Phys. Chem. 84, 3363-3370. [CrossRef] [Google Scholar]
  • Unmuth E.E.,Schwartz L.H.,Butt J.B. (1980) Iron alloy Fischer-Tropsch catalysts: I: Carburization studies of the Fe—Ni system, J. Catal. 63, 404-414. [CrossRef] [Google Scholar]
  • Chernavskii P.A.,Pankina G.V.,Lunin V.V. (1996) Carbidizing of iron deposited on SiO2 and Al2O3 in Fischer-Tropsch synthesis, Russ. J. Phys. Chem. 70, 1016-1021. [Google Scholar]
  • Chernavskii P.A.,Lunin V.V. (1996) Kinetics of Iron Carbide Formation in Hydrogenation of CO over a Potassium-promoted Fe/SiO2 Catalyst, Kinetics Catal. 37, 850-854. [Google Scholar]
  • Chernavskii P.A. (1997) The carburization kinetics of iron-based Fischer-Tropsch synthesis catalysts, Catal. Lett. 45, 215-219. [CrossRef] [Google Scholar]
  • Ichiyanagi Y.,Yamada S. (2005) The size-dependent magnetic properties of Co3O4 nanoparticles, Polyhedron 24, 2813-2816. [CrossRef] [Google Scholar]
  • Romero J., Jiménez J., DelCerro J. (2004) Calorimetric investigation on the paramagnetic-antiferromagnetic phase transition in CoO, J. Magn. Magn. Mater. 280, 257-263. [CrossRef] [Google Scholar]
  • Bedel L.,Roger A.C.,Estournes C.,Kiennemann A. (2003) Co0 from partial reduction of La(Co,Fe)O3 perovskites for Fischer-Tropsch synthesis, Catal. Today 85, 207-218. [CrossRef] [Google Scholar]
  • Bedel L.,Roger A.-C.,Rehspringer J.-L.,Zimmermann Y.,Kiennemann A. (2005) La(1-y)Co0.4Fe0.6OFormula perovskite oxides as catalysts for Fischer-Tropsch synthesis, J. Catal. 235, 279-294. [CrossRef] [Google Scholar]
  • Chernavskii P.A.,Khodakov A.Y.,Pankina G.V.,Girardon J.-S.,Quinet E. (2006) In situ characterization of the genesis of cobalt metal particles in silica-supported Fischer-Tropsch catalysts using Foner magnetic method, Appl. Catal. A 306, 108-119. [CrossRef] [Google Scholar]
  • Chernavskii P.A.,Lermontov A.S.,Pankina G.V.,Torbin S.N.,Lunin V.V. (2002) Effect of the ZrO2 pore structure on the reduction of a supported cobalt oxide in catalysts for Fischer-Tropsch synthesis, Kinetics Catal. 43, 268-274 [CrossRef] [Google Scholar]
  • Chu W.,Chernavskii P.A.,Gengembre L.,Pankina G.A.,Fongarland P.A.,Khodakov A.Y. (2007) Cobalt species in promoted cobalt alumina-supported Fischer-Tropsch catalysts, J. Catal. 252, 215-230. [CrossRef] [Google Scholar]
  • Girardon J.-S.,Lermontov A.S.,Gengembre L.,Chernavskii P.A.,Griboval-Constant A.,Khodakov A.Y. (2005) Effect of cobalt precursor and pretreatment conditions on the structure and catalytic performance of cobalt silica-supported Fischer-Tropsch catalysts, J. Catal. 230, 339-352. [CrossRef] [Google Scholar]
  • Girardon J.-S.,Constant-Griboval A.,Gengembre L.,Chernavskii P.A.,Khodakov A.Y. (2005) Optimization of the pretreatment procedure in the design of cobalt silica supported Fischer-Tropsch catalysts, Catal. Today 106, 161-165. [CrossRef] [Google Scholar]
  • Kissinger H.E. (1957) Reaction kinetics in differential thermal analysis, Anal. Chem. 29, 1703-1706. [CrossRef] [Google Scholar]
  • Grandvallet P., Courty Ph., Freund E. (1984) Characterization and catalytic properties of copper-cobalt-aluminium-zinc mixed phases for higher alcohol synthesis, Proc. of the 8th Int. Cong. on Catal., Springer Verlag, Berlin, II, pp. 81-92. [Google Scholar]
  • Courty Ph.,Chaumette P.,Raimbault C.,Travers Ph. (1990) Production of methanol-higher alcohol mixtures from natural gas via syngas chemistry, Revue I.F.P. 45, 4, 561-578. [Google Scholar]
  • Dalmon J.-A.,Chaumette P.,Mirodatos C. (1992) Higher alcohols synthesis on cobalt based model catalysts, Catal. Today 15, 101-127. [CrossRef] [Google Scholar]
  • van de Loosdrecht J.,Balzhinimaev B.,Dalmon J.-A.,Niemantsverdriet J.W.,Tsybulya S.V.,Saib A.M., van Berge P.J.,Visagie J.L. (2007) Cobalt Fischer-Tropsch synthesis: Deactivation by oxidation? Catal. Today 123, 293-302. [CrossRef] [Google Scholar]
  • Bremaud M.,Fongarland P.,Anfray J.,Jallais S.,Schweich D.,Khodakov A.Y. (2005) Influence of syngas composition on the transient behavior of a Fischer-Tropsch continuous slurry reactor, Catal. Today 106, 137-142. [CrossRef] [Google Scholar]
  • van Steen E., Clayes M., Dry M.E., van de Loosdrecht J.,Vilkoen E.L.,Visagie J.L. (2005) Stability of nanocrystals: Thermodynamic analysis of oxidation and re-reduction of cobalt in water/hydrogen mixtures, J. Phys. Chem. B 109, 3575-3677. [CrossRef] [PubMed] [Google Scholar]
  • Hauffe K. (1963) Reactions in solids and at their surface, Russian translation, Moscow, IL, Vol. 2, p. 275. [Google Scholar]
  • Cabrera N.,Mott N.F. (1948) The theory of the oxidation of metals, Rep. Prog. Phys. 12, 163-184. [CrossRef] [Google Scholar]
  • Barbier A.,Tuel A.,Arcon I.,Kodre A.,Martin G.A. (2001) Characterization and catalytic behavior of Co/SiO2 catalysts: Influence of dispersion in the Fischer-Tropsch reaction, J. Catal. 200, 106-116. [CrossRef] [Google Scholar]
  • Barbier A.,Hanif A.,Dalmon J.-A.,Martin G.A. (1998) Preparation and characterization of well-dispersed and stable Co/SiO2 catalysts using the ammonia method, Appl. Catal. AGen. 168, 333-343. [CrossRef] [Google Scholar]
  • Martin G.A., Dalmon J.-A., Mirodatos C. (1984) Particle sizesensitivity in catalysis by nickel: a statistical approach based on the combined effect of surface coverage and active dimension site, Proc. 8th Int. Cong. Catal., Berlin 1984, Dechema, IV, pp. 371-380. [Google Scholar]
  • Chu W.,Wang L.-N.,Chernavskii P.A.,Khodakov A.Y. (2008) Glow discharge plasma assisted design of cobalt catalysts for Fischer Tropsch synthesis, Angew. Chem. Int. Edit. 47, 5052-5055. [CrossRef] [Google Scholar]
  • Zhang Y.,Chu W.,Cao W.,Luo C.,Wen X.,Zhou K. (2000) A plasma-activated Ni/alpha-Al2O3 catalyst for the conversion of CH4 to syngas, Plasma Chem. Plasma P. 20, 137-144. [CrossRef] [Google Scholar]
  • Baker J.E.,Burch R.,Hibble S.J.,Loader P.K. (1990) Properties of silica-supported Cu-Co bimetallic catalysts in the synthesis of higher alcohols, Appl. Catal. 65, 281-292. [CrossRef] [Google Scholar]
  • Khodakov A.,Griboval-Constant A.,Bechara R.,Villain F. (2001) Pore-size control of cobalt dispersion and reducibility in mesoporous silicas, J. Phys. Chem. B 105, 9805-9811. [CrossRef] [Google Scholar]
  • Khodakov A.,Lynch J.,Bazin D.,Rebours B.Zanier N.Moisson B.,Chaumette P. (1997) Reducibility of cobalt species in silica-supported Fischer-Tropsch catalysts, J. Catal. 168, 16-25. [CrossRef] [Google Scholar]
  • Sewell G.S., van Steen E.,O'Connor C.T. (1996) Use of TPR/TPO for characterization of supported cobalt catalysts, Catal. Lett. 37, 255-260. [CrossRef] [Google Scholar]
  • Pichon C.,Lynch J. (2005) Synchrotron radiation and oil industry research, Oil Gas Sci. Technol. 60, 735-746. [CrossRef] [EDP Sciences] [Google Scholar]
  • Newton M.A.,Dent A.J.,Fiddy S.G.,Jyoti B.,Evans J. (2007) Combining diffuse reflectance infrared spectroscopy (DRIFTS), dispersive EXAFS, and mass spectrometry with high time resolution: Potential, limitations, and application to the study of NO interaction with supported Rh catalysts, Catal. Today 126, 1-2, 64-72. [CrossRef] [Google Scholar]
  • Frahm R. (1988) Quick scanning EXAFS: First experiments, Nucl. Instrum. Meth. A 270, 2-3, 578-581. [CrossRef] [Google Scholar]
  • Williamson G.K.,Hall W.H. (1953) X-ray line broadening from filed aluminium and wolfram, Acta Metal. 1, 22-31. [CrossRef] [Google Scholar]
  • Lynch J. (2002) Development of Structural Characterisation Tools for Catalysts, Oil Gas Sci. Technol. 57, 281-305. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pan M.,Cowley J.M.,Chan I.Y. (1990) HREM imaging of small Pt clusters dispersed in Y-zeolites, Catal. Lett. 5, 1-11. [CrossRef] [Google Scholar]
  • Kerkhof F.P.J.,Moulijn J.A. (1979) Quantitative analysis of XPS intensities for supported catalysts, J. Phys. Chem. 83, 1612-1619. [CrossRef] [Google Scholar]
  • Kuipers H.P.C.E., Van Leuven H.C.E.,Visser W.M. (1986) The characterization of heterogeneous catalysts by XPS based on geometrical probability. 1. Monometallic catalysts, Surf. Interface Anal. 8, 235-242. [CrossRef] [Google Scholar]
  • Somorjai G.A. (1994) Introduction to Surface Chemistry and Catalysis, Willey, New York. [Google Scholar]
  • Benfield R. (1992) Mean coordination numbers and the nonmetal metal transition in clusters, J. Chem. Soc. Faraday Trans. 88, 8, 1107-1110. [CrossRef] [Google Scholar]
  • Chu W.,Chernavskii P.A.,Gengembre L.,Pankina G.A.,Fongarland P.,Khodakov A.Y. (2007) Cobalt Species in Promoted Cobalt Alumina-Supported Fischer-Tropsch Catalysts, J. Catal. 252, 215-230 [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.