Dossier: Diesel Engines and Fuels: a Wide Range of Evolutions to Come
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 63, Number 4, July-August 2008
Dossier: Diesel Engines and Fuels: a Wide Range of Evolutions to Come
Page(s) 495 - 515
DOI https://doi.org/10.2516/ogst:2008022
Published online 26 June 2008
  • Stranglmaier R.H., Roberts C.E. (1999) Homogeneous Charge Compression Ignition (HCCI): Benefits, Compromises and Future Engine Applications, SAE Paper 1999-01-3682. [Google Scholar]
  • Barths H., Antony C., Peters N. (1998) Three-dimensional Simulation of Pollutant Formation in a DI Diesel Engine Using Multiple Interactive Flamelets, SAE Paper 982459. [Google Scholar]
  • Barths H.,Pitsch H.,Peters N. (1999) Three-dimensional Simulation of DI Diesel Combustion and Pollutant Formation Using a Two-component Reference Fuel, Oil Gas Sci. Technol. 54, 233-244. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kong S.C.,Reitz R.D. (2003) Application of Detailed Chemistry and CFD for Predicting Direct Injection HCCI Engine Combustion and Emissions, Proceedings of 29th International Symposium on Combustion 29, 1, 663-669. [Google Scholar]
  • Gopalakrishnan V.,Abraham J. (2004) Computed NO and Soot Distribution in Turbulent Transient Jets under Diesel Conditions, Combust. Sci. Technol. 176, 603-641. [CrossRef] [Google Scholar]
  • Huguet C., Millet C.-N., Menegazzi P., Martin B., Chaumeix N., Paillard C.E. (2005) Correlation between Kinetic Reactivity and Structural Changes for Catalytic and Non-catalytic Oxidation of Diesel Soot, European Combustion Meeting. [Google Scholar]
  • Martinot S., Béard P., Roesler J., Garo A. (2001) Comparison and Coupling of Homogeneous Reactor and Flamelet Library Soot Modeling Approaches for Diesel Combustion, SAE Paper 2001-01-3684. [Google Scholar]
  • Patterson M.A., Kong S.C., Hampson G.J., Reitz R.D. (1994) Modeling the Effects of Fuel Injection Characteristics on Diesel Engine Soot and NOx Emissions, SAE Paper 940523. [Google Scholar]
  • Smooke M.D.,Long M.B.,Connelly B.C.,Colket M.B.,Hall R.J. (2005) Soot Formation in Laminar Diffusion Flames, Combust. Flame 143, 613-628. [CrossRef] [Google Scholar]
  • Tao F.,Golovitchev V.I.,Chomak J. (2004) A Phenomenological Model for the Prediction of Soot Formation in Diesel Spray Combustion, Combust. Flame 136, 270-282. [CrossRef] [Google Scholar]
  • Kazakov A., Foster D.E. (1998) Modeling of Soot Formation during DI Diesel Combustion Using a Multi-step Phenomenological Model, SAE Paper 982463. [Google Scholar]
  • Jay S., Béard P., Pires da Cruz A. (2007) Modeling Coupled Processes of CO and Soot Formation and Oxidation for Conventional and HCCI Diesel Combustion, SAE Paper 2007-01-0162. [Google Scholar]
  • Zolver M.,Klahr D.,Bohbot J.,Laget O.,Torres A. (2003) Reactive CFD in Engines with a New Unstructured Parallel Solver, Oil Gas Sci. Technol. 58, 33-46. [CrossRef] [EDP Sciences] [Google Scholar]
  • Colin O.,Benkenida A. (2004) The 3-Zones Extended Coherent Flame Model (ECFM3Z) for Computing Premixed/Diffusion Combustion, Oil Gas Sci. Technol. 59, 593-609. [CrossRef] [EDP Sciences] [Google Scholar]
  • Colin O. (2007) Étude GSM D.C.1 2006 – Modélisation Diesel, Phase 1 : Amélioration du modèle de mélange dans ECFM3Z, Rapport IFP 59798. [Google Scholar]
  • Colin O., Pires da Cruz A.,Jay S. (2005) Detailed Chemistry Based Auto-ignition Model Including Low Temperature Phenomena Applied to 3-D Engine Calculations, Proceedings of the Combustion Institute 30, 2649-2656. [CrossRef] [Google Scholar]
  • Knop V.,Jay S. (2006) Latest Developments in Gasoline Autoignition Modelling Applied to an Optical CAI™ Engine, Oil Gas Sci. Technol. 61, 121-138. [CrossRef] [EDP Sciences] [Google Scholar]
  • Béard P. (2005) Towards a Predictive Modeling of Transient Injection Conditions of Diesel Sprays in DID Engines, Proceedings of the ILASS Americas 18th Annual conference. [Google Scholar]
  • Buda F., Bounaceur R., Warth V., Glaude PA.,Fournet R.,Battin-Leclerc F. (2005) Progress Toward a Unified Detailed Kinetic Model for the Auto-ignition of Alkanes from C4 to C10 between 600 and 1200 K, Combust. Flame 142, 170-186. [CrossRef] [Google Scholar]
  • Hautman D.J.,Dryer F.L.,Schug K.P.,Glassman I. (1981) A Multiple-step Overall Kinetic Mechanism for the Oxidation of Hydrocarbons, Combust. Sci. Technol. 25, 219-235. [CrossRef] [Google Scholar]
  • Warnatz J. (1984) Chemistry of High Temperature Oxidation of Alkanes up to Octane, Twentieth Symposium (International) on Combustion, The Combustion Institute, pp. 845-856. [Google Scholar]
  • Curran H.J.,Gaffuri P.,Pitz W.J.,Westbrook C.K. (1998) A Comprehensive Modeling Study of n-heptane Oxidation, Combust. Flame 114, 149-177. [CrossRef] [Google Scholar]
  • Westbrook C.K. (2000) Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems, Twenty-eight Symposium (International) on Combustion, The Combustion Institute, pp. 1563-1577. [Google Scholar]
  • Dobbins R.A.,Fletcher R.A.,Benner B.A.,Hoeft S. (2006) Polycyclic Aromatic Hydrocarbons in Flames, in Diesel Fuels and in Diesel Emissions, Combust. Flame 144, 773-781. [CrossRef] [Google Scholar]
  • Collura S., Chaoui N., Koch A., Weber J.V. (2003) Diesel Soot Combustion: Influence of the Amount of Soluble Organic Fraction on the Kinetic Parameters, New Carbon Materials 18. [Google Scholar]
  • Wang H. (1992) Detailed Kinetic Modeling of Soot Particle Formation in Laminar Premixed Hydrocarbon Flames, PhD Thesis, Pennsylvania State Univ., USA. [Google Scholar]
  • Heywood J.B. (1988) Internal Combustion Engine Fundamentals, Mc Graw Hill. [Google Scholar]
  • Zeldovitch YA.B., Sadovnikov P.YA., Frank-Kamenetskii D.A. (1947) Oxidation of Nitrogen in Combustion, translated by Shelef M., Academy of Science of USSR, Moscow. [Google Scholar]
  • Miller J.A.,Bowman C.T. (1989) Mechanism and Modeling of Nitrogen Chemistry in Combustion, Prog. Energ. Combust. 15, 287-338. [CrossRef] [Google Scholar]
  • Walter B., Gatellier B. (2002) Development of the High Power NADI™ Concept Using Dual Mode Diesel Combustion to Achieve Zero NOx and Particulate Emissions, SAE Paper 2002-01-1744. [Google Scholar]
  • Walter B.,Gatellier B. (2003) Near Zero NOx Emissions and High Fuel Efficiency Diesel Engine : the NADI™ Concept Using Dual Mode Diesel Combustion, Oil Gas Sci. Technol. 58, 101-114. [CrossRef] [EDP Sciences] [Google Scholar]
  • Ranini A., Potteau S., Gatellier B. (2004) New Developments of the NADI™ Concept to Improve Operating Range, Exhaust Emissions and Noise, THIESEL 2004 Conference on Thermoand Fluid Dynamic Processes in Diesel Engines, Valence. [Google Scholar]
  • Réveillé B., Kleemann A., Knop V., Habchi C. (2006) Potential of Narrow Angle Direct Injection Diesel Engines for Clean Combustion: 3D CFD Analysis, SAE Paper 2006-01-1365. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.