Dossier: Diesel Engines and Fuels: a Wide Range of Evolutions to Come
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 63, Numéro 4, July-August 2008
Dossier: Diesel Engines and Fuels: a Wide Range of Evolutions to Come
Page(s) 495 - 515
DOI https://doi.org/10.2516/ogst:2008022
Publié en ligne 26 juin 2008
  • Stranglmaier R.H., Roberts C.E. (1999) Homogeneous Charge Compression Ignition (HCCI): Benefits, Compromises and Future Engine Applications, SAE Paper 1999-01-3682. [Google Scholar]
  • Barths H., Antony C., Peters N. (1998) Three-dimensional Simulation of Pollutant Formation in a DI Diesel Engine Using Multiple Interactive Flamelets, SAE Paper 982459. [Google Scholar]
  • Barths H.,Pitsch H.,Peters N. (1999) Three-dimensional Simulation of DI Diesel Combustion and Pollutant Formation Using a Two-component Reference Fuel, Oil Gas Sci. Technol. 54, 233-244. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kong S.C.,Reitz R.D. (2003) Application of Detailed Chemistry and CFD for Predicting Direct Injection HCCI Engine Combustion and Emissions, Proceedings of 29th International Symposium on Combustion 29, 1, 663-669. [Google Scholar]
  • Gopalakrishnan V.,Abraham J. (2004) Computed NO and Soot Distribution in Turbulent Transient Jets under Diesel Conditions, Combust. Sci. Technol. 176, 603-641. [CrossRef] [Google Scholar]
  • Huguet C., Millet C.-N., Menegazzi P., Martin B., Chaumeix N., Paillard C.E. (2005) Correlation between Kinetic Reactivity and Structural Changes for Catalytic and Non-catalytic Oxidation of Diesel Soot, European Combustion Meeting. [Google Scholar]
  • Martinot S., Béard P., Roesler J., Garo A. (2001) Comparison and Coupling of Homogeneous Reactor and Flamelet Library Soot Modeling Approaches for Diesel Combustion, SAE Paper 2001-01-3684. [Google Scholar]
  • Patterson M.A., Kong S.C., Hampson G.J., Reitz R.D. (1994) Modeling the Effects of Fuel Injection Characteristics on Diesel Engine Soot and NOx Emissions, SAE Paper 940523. [Google Scholar]
  • Smooke M.D.,Long M.B.,Connelly B.C.,Colket M.B.,Hall R.J. (2005) Soot Formation in Laminar Diffusion Flames, Combust. Flame 143, 613-628. [CrossRef] [Google Scholar]
  • Tao F.,Golovitchev V.I.,Chomak J. (2004) A Phenomenological Model for the Prediction of Soot Formation in Diesel Spray Combustion, Combust. Flame 136, 270-282. [CrossRef] [Google Scholar]
  • Kazakov A., Foster D.E. (1998) Modeling of Soot Formation during DI Diesel Combustion Using a Multi-step Phenomenological Model, SAE Paper 982463. [Google Scholar]
  • Jay S., Béard P., Pires da Cruz A. (2007) Modeling Coupled Processes of CO and Soot Formation and Oxidation for Conventional and HCCI Diesel Combustion, SAE Paper 2007-01-0162. [Google Scholar]
  • Zolver M.,Klahr D.,Bohbot J.,Laget O.,Torres A. (2003) Reactive CFD in Engines with a New Unstructured Parallel Solver, Oil Gas Sci. Technol. 58, 33-46. [CrossRef] [EDP Sciences] [Google Scholar]
  • Colin O.,Benkenida A. (2004) The 3-Zones Extended Coherent Flame Model (ECFM3Z) for Computing Premixed/Diffusion Combustion, Oil Gas Sci. Technol. 59, 593-609. [CrossRef] [EDP Sciences] [Google Scholar]
  • Colin O. (2007) Étude GSM D.C.1 2006 – Modélisation Diesel, Phase 1 : Amélioration du modèle de mélange dans ECFM3Z, Rapport IFP 59798. [Google Scholar]
  • Colin O., Pires da Cruz A.,Jay S. (2005) Detailed Chemistry Based Auto-ignition Model Including Low Temperature Phenomena Applied to 3-D Engine Calculations, Proceedings of the Combustion Institute 30, 2649-2656. [CrossRef] [Google Scholar]
  • Knop V.,Jay S. (2006) Latest Developments in Gasoline Autoignition Modelling Applied to an Optical CAI™ Engine, Oil Gas Sci. Technol. 61, 121-138. [CrossRef] [EDP Sciences] [Google Scholar]
  • Béard P. (2005) Towards a Predictive Modeling of Transient Injection Conditions of Diesel Sprays in DID Engines, Proceedings of the ILASS Americas 18th Annual conference. [Google Scholar]
  • Buda F., Bounaceur R., Warth V., Glaude PA.,Fournet R.,Battin-Leclerc F. (2005) Progress Toward a Unified Detailed Kinetic Model for the Auto-ignition of Alkanes from C4 to C10 between 600 and 1200 K, Combust. Flame 142, 170-186. [CrossRef] [Google Scholar]
  • Hautman D.J.,Dryer F.L.,Schug K.P.,Glassman I. (1981) A Multiple-step Overall Kinetic Mechanism for the Oxidation of Hydrocarbons, Combust. Sci. Technol. 25, 219-235. [CrossRef] [Google Scholar]
  • Warnatz J. (1984) Chemistry of High Temperature Oxidation of Alkanes up to Octane, Twentieth Symposium (International) on Combustion, The Combustion Institute, pp. 845-856. [Google Scholar]
  • Curran H.J.,Gaffuri P.,Pitz W.J.,Westbrook C.K. (1998) A Comprehensive Modeling Study of n-heptane Oxidation, Combust. Flame 114, 149-177. [CrossRef] [Google Scholar]
  • Westbrook C.K. (2000) Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems, Twenty-eight Symposium (International) on Combustion, The Combustion Institute, pp. 1563-1577. [Google Scholar]
  • Dobbins R.A.,Fletcher R.A.,Benner B.A.,Hoeft S. (2006) Polycyclic Aromatic Hydrocarbons in Flames, in Diesel Fuels and in Diesel Emissions, Combust. Flame 144, 773-781. [CrossRef] [Google Scholar]
  • Collura S., Chaoui N., Koch A., Weber J.V. (2003) Diesel Soot Combustion: Influence of the Amount of Soluble Organic Fraction on the Kinetic Parameters, New Carbon Materials 18. [Google Scholar]
  • Wang H. (1992) Detailed Kinetic Modeling of Soot Particle Formation in Laminar Premixed Hydrocarbon Flames, PhD Thesis, Pennsylvania State Univ., USA. [Google Scholar]
  • Heywood J.B. (1988) Internal Combustion Engine Fundamentals, Mc Graw Hill. [Google Scholar]
  • Zeldovitch YA.B., Sadovnikov P.YA., Frank-Kamenetskii D.A. (1947) Oxidation of Nitrogen in Combustion, translated by Shelef M., Academy of Science of USSR, Moscow. [Google Scholar]
  • Miller J.A.,Bowman C.T. (1989) Mechanism and Modeling of Nitrogen Chemistry in Combustion, Prog. Energ. Combust. 15, 287-338. [CrossRef] [Google Scholar]
  • Walter B., Gatellier B. (2002) Development of the High Power NADI™ Concept Using Dual Mode Diesel Combustion to Achieve Zero NOx and Particulate Emissions, SAE Paper 2002-01-1744. [Google Scholar]
  • Walter B.,Gatellier B. (2003) Near Zero NOx Emissions and High Fuel Efficiency Diesel Engine : the NADI™ Concept Using Dual Mode Diesel Combustion, Oil Gas Sci. Technol. 58, 101-114. [CrossRef] [EDP Sciences] [Google Scholar]
  • Ranini A., Potteau S., Gatellier B. (2004) New Developments of the NADI™ Concept to Improve Operating Range, Exhaust Emissions and Noise, THIESEL 2004 Conference on Thermoand Fluid Dynamic Processes in Diesel Engines, Valence. [Google Scholar]
  • Réveillé B., Kleemann A., Knop V., Habchi C. (2006) Potential of Narrow Angle Direct Injection Diesel Engines for Clean Combustion: 3D CFD Analysis, SAE Paper 2006-01-1365. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.