Dossier: Research Advances in Rational Design of Catalysts and Sorbents
Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 61, Numéro 4, July-August 2006
Dossier: Research Advances in Rational Design of Catalysts and Sorbents
Page(s) 471 - 477
Publié en ligne 1 janvier 2007
  • Ertl, G., Knözinger, H. and Weitkamp, J. (eds.) (1997) Handbook of Heterogeneous Catalysis, Wiley, New York. [Google Scholar]
  • Duke, C.B. and Plummer, E.W. (eds.) (2002) Frontiers in Surface and Interface Science, North-Holland, Amsterdam. [Google Scholar]
  • Cant, N.W.,Hicks, P.C. and Lennon, B.S. (1978) Steady-state oxidation of carbon monoxide over supported noble metals with particular reference to platinum. J. Catal. 54, 372-383. [CrossRef] [Google Scholar]
  • Peden, C.H.F. and Goodman, D.W. (1986) Kinetics of CO oxidation over Ru(0001). J. Phys. Chem. 90, 1360-1365. [CrossRef] [Google Scholar]
  • Böttcher, A.,Niehus, H.,Schwegmann, S.,Over, H. and Ertl, G. (1997) CO reaction over oxygen-rich Ru(0001) surfaces. J. Phys. Chem. B 101, 11185-11191. [CrossRef] [Google Scholar]
  • Böttcher, A. and Niehus, H. (1999) Oxygen adsorbed on oxidized Ru(0001). Phys. Rev. B 60, 14396-14404. [CrossRef] [Google Scholar]
  • Over, H.,Kim, Y.D.,Seitsonen, A.P.,Wendt, S.,Lundgren, E.,Schmid, M.,Varga, P.,Morgante, A. and Ertl, G. (2000) Atomic-scale structure and catalytic reactivity of the RuO2(110) surface. Science 287, 1474-1476. [CrossRef] [PubMed] [Google Scholar]
  • Kim, Y.D.,Over, H.,Krabbes, G. and Ertl, G. (2001) Identifi-cation of RuO2 as the active phase in CO oxidation on oxygenrich ruthenium surfaces. Top. Catal. 14, 95-100. [CrossRef] [Google Scholar]
  • Reuter, K., Stampfl, C., Ganduglia-Pirovano, M.V. and Schef-fler, M. (2002) Atomistic description of oxide formation on metal surfaces: the example of ruthenium. Chem. Phys. Lett. 352, 311-317. [Google Scholar]
  • Over, H. and Muhler, M. (2003) Catalytic CO oxidation over ruthenium – bridging the pressure gap. Prog. Surf. Sci. 72, 3-17; and refs. therein. [CrossRef] [Google Scholar]
  • Assmann, J., Narkhede, V., Khodeir, L., Lö.er, E.,Hinrichsen, O.,Birkner, A.,Over, H. and Muhler, M. (2004) On the nature of the active state of supported ruthenium catalysts used for the oxidation of carbon monoxide: steady-state and transient kinetics combined with in situ infrared spectroscopy. J. Phys. Chem. B 108, 14634-14642. [CrossRef] [Google Scholar]
  • He, Y.B.,Knapp, M.,Lundgren, E. and Over, H. (2005) Ru(0001) model catalyst under oxidizing and reducing reaction conditions: in situ high-pressure surface X-ray di.raction study. J. Phys. Chem. B 109, 21825-21830. [CrossRef] [PubMed] [Google Scholar]
  • Liu, Z.P.,Hu, P. and Alavi, A. (2001) Mechanism for the high reactivity of CO oxidation on a ruthenium-oxide. J. Chem. Phys. 114, 5956-5957. [CrossRef] [Google Scholar]
  • Fan, C.Y.,Wang, J.,Jacobi, K. and Ertl, G. (2001) The oxidation of CO on RuO2(110) at room temperature. J. Chem. Phys. 114, 10058-10062. [CrossRef] [Google Scholar]
  • Wang, J.,Fan, C.Y.,Jacobi, K. and Ertl, G. (2002) The kinetics of CO oxidation on RuO2(110): bridging the pressure gap. J. Phys. Chem. B 106, 3422-3427. [CrossRef] [Google Scholar]
  • Stampfl, C., Schwegmann, S., Over, H.,,M. and Ertl., G. (1996) Structure and stability of a high-coverage (1 × 1) oxygen phase on Ru(0001). Phys. Rev. Lett. 77, 3371-3374. [Google Scholar]
  • Todorova, M., Li, W.X., Ganduglia-Pirovano, M.V., Stampfl, C., Reuter, K. and, M. (2002) Role of subsurface oxygen in oxide formation at transition metal surfaces. Phys. Rev. Lett. 89, 096103. [Google Scholar]
  • Böttcher, A.,Starke, U.,Conrad, H.,Blume, R.,Niehus, H.,Gregoratti, L.,Kaulich, B.,Barinov, A. and Kiskinova, M. (2002) Spectral and spatial anisotropy of the oxide growth on Ru(0001). J. Chem. Phys. 117, 8104-8109. [CrossRef] [Google Scholar]
  • Blume, R.,Niehus, H.,Conrad, H.,Böttcher, A.,Aballe, L.,Gregoriatti, L.,Barinov, A. and Kiskinova, M. (2005) Identi-fication of subsurface oxygen species created during oxidation of Ru(0001). J. Phys. Chem. B 109, 14052-14058. [CrossRef] [PubMed] [Google Scholar]
  • Reuter, K. and, M. (2004) Oxide formation at the surface of late 4d transition metals: insights from first-principles atomistic thermodynamics. Appl. Phys. A-Mater. 78, 793-798. [Google Scholar]
  • Reuter, K. (2006) Nanometer and Sub-nanometer Thin Oxide Films at Surfaces of Late Transition Metals, in Nanocatalysis: Principles, Methods, Case Studies, Heiz, U., Landman, U. (eds.), Springer, Berlin. [Google Scholar]
  • Reuter, K. and, M. (2002) Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B 65, 035406. [Google Scholar]
  • Reuter, K. and, M. (2003) First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions. Phys. Rev. Lett. 90, 046103. [Google Scholar]
  • Reuter, K. and, M. (2003) Composition and structure of the RuO2(110) surface in an O2 and CO environment: implications for the catalytic formation of CO2. Phys. Rev. B 68, 045407. [Google Scholar]
  • Reuter, K., Frenkel, D. and, M. (2004) The steadystate of heterogeneous catalysis, studied by first-principles statistical mechanics. Phys. Rev. Lett. 93, 116105. [Google Scholar]
  • Reuter, K. and, M. (2006) First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: application to the CO oxidation at RuO2(110). Phys. Rev. B 73, 045433. [Google Scholar]
  • Kim, Y.D., Seitsonen, A.P., Wendt, S., Wang, J., Fan, C.Y., Jacobi, K., Over, H. and Ertl, G. (2001) Characterization of various oxygen species on an oxide surface: RuO2(110) J. Phys. Chem. B 105, 3752-3758. [Google Scholar]
  • Kim, Y.D., Seitsonen, A.P. and Over, H. (2001) Adsorption characteristics of CO and N2 on RuO2(110). Phys. Rev. B 63, 115419. [Google Scholar]
  • Seitsonen, A.P., Kim, Y.D., Knapp, M., Wendt, S. and Over, H. (2001) CO adsorption on the reduced RuO2(110) surface: energetics and structure. Phys. Rev. B 65, 035413. [Google Scholar]
  • Wang, J.,Fan, C.Y.,Jacobi, K. and Ertl, G. (2001) Adsorption and reaction ofCOon RuO2(110) surfaces. Surf. Sci. 481, 113-118. [CrossRef] [Google Scholar]
  • Kim, S.H.,Paulus, U.A.,Wang, Y.,Wintterlin, J.,Jacobi, K. and Ertl, G. (2003) Interaction of CO with the stoichiometric RuO2(110) surface. J. Chem. Phys. 119, 9729-9736. [CrossRef] [Google Scholar]
  • Paulus, U.A.,Wang, Y.,Jacobi, K. and Ertl, G. (2003) CO adsorption on the reduced RuO2(110) surface. Surf. Sci. 547, 349-354. [CrossRef] [Google Scholar]
  • Kiejna, A., Kresse, G., Rogal, J., De Sarkar, A., Reuter, K. and, M. (2006) Comparison of the full-potential and frozen-core approximation approaches to density-functional calculations of surfaces. Phys. Rev. B 73, 035404. [Google Scholar]
  • Reuter, K., Stampfl, C. and, M. (2005) Ab Initio Atomistic Thermodynamics and Statistical Mechanics of Surface Properties and Functions, in Handbook of Materials Modeling, Vol. 1, Yip., S. (ed.), Springer, Berlin. ISBN 1-4020-3287-0. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.