Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 58, Number 5, September-October 2003
Page(s) 567 - 569
Published online 01 December 2006
  • Oberlander, R.K. (1984) Aluminas for Catalysts - Their Preparation and Properties. In: Applied Industrial Catalysis, 3, Leach, B.E., Academic Press, 63-113.
  • Brunelle, J.P., Nortier, P. and Poisson, R. (1987) In: Catalysts Supports and Supported Catalysts, Stiles, A.B., Butterworths Ed., 11-55.
  • Huo, Q.,Margolese, D.I.,Ciesla, U.,Demuth, D.G.,Feng, P.,Gier, T.E.,Sieger, P.,Firouzi, A.,Chmelka, B.F.,Schüth, F. and Stucky, G.D. (1994) Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays. Chem. Mater., 6, 1176-1191. [CrossRef]
  • Huo, Q.,Margolese, D.I.,Ciesla, U.,Feng, P.,Gier, T.E.,Sieger, P.,Leon, R.,Petroff, P.M.,Schüth, F. and Stucky, G.D. (1994) Generalized Synthesis of Periodic Surfactant/ Inorganic Composite Materials. Nature, 368, 317-321. [CrossRef]
  • Vaudry, F.,Khodabandeh, S. and Davis, M.E. (1996) Synthesis of Pure Alumina Mesoporous Materials. Chem. Mater., 8, 1451-1464. [CrossRef]
  • Liu, X.,Wei, Y.,Jin, D. and Shih, W.H. (2000) Synthesis of Mesoporous Aluminum Oxide with Aluminum Alkoxide and Tartaric Acid. Mater. Lett., 42, 143-149. [CrossRef]
  • Valange, S.,Guth, J.L.,Kolenda, F.,Lacombe, S. and Gabelica, Z. (2000) Synthesis Strategies Leading to Surfactant-Assisted Aluminas with Controlled Mesoporosity in Aqueous Media. Microporous Mesoporous Mater., 35-36, 597-607. [CrossRef]
  • Stein, A. and Holland, B.T. (1996) Aluminum-Containing Mesostructural Materials. J. Porous Mater., 3, 83-92. [CrossRef]
  • Holland, B.T.,Isbester, P.K.,Munson, E.J. and Stein, A. (1999) Transformation of Layered Polyoxometallate Cluster Salts into Mesoporous Materials. Mater. Res. Bull., 34, 471-482. [CrossRef] [MathSciNet]
  • Holland, B.T.,Isbester, P.K.,Munson, E.J. and Stein, A. (1999) Transformation of Layered Polyoxometallate Cluster Salts into Mesoporous Materials. Mater. Res. Bull., 34, 471-482. [CrossRef] [MathSciNet]
  • Yada, M., Machida, M. and Kijima, T. (1996) Synthesis and Deorganization of an Aluminium-Based Dodecyl Sulphate Mesophase with a Hexagonal Structure. Chem. Commun., 769-770.
  • Yada, M.,Hiyoshi, H.,Ohe, K.,Machida, M. and Kijima, T. (1997) Synthesis of Aluminium-Based Surfactant Mesophases Morphologically Controlled Through a Layer to Hexagonal Transition. Inorg. Chem., 36, 5565-5569. [CrossRef]
  • Yada, M.,Hiyoshi, H.,Machida, M. and Kijima, T. (1998) Aluminum-Based Surfactant Mesophases Structurally and Morphologically Controlled by Anions. J. Porous Mater., 5, 133-138. [CrossRef]
  • Yada, M., Ohya, M., Machida, M. and Kijima, T. (1998) Synthesis of Porous Yttrium Aluminium Oxide Templated by Dodecyl Sulphate Assemblies. Chem. Commun., 1941-1942.
  • Yada, M.,Kitamura, H.,Machida, M. and Kijima, T. (1998) Yttrium-based Porous Materials Templated by Anionic Surfactant Assemblies. Inorg. Chem., 37, 6470-6475. [CrossRef] [PubMed]
  • Yada, M.,Kitamura, H.,Machida, M. and Kijima, T. (1997) Biomimetic Surface Patterns of Layered Aluminium Oxide Mesophases Templated by Mixed Surfactant Assemblies. Langmuir, 13, 5252-5257. [CrossRef]
  • Acosta, S., Ayral, A., Guizard, C. and Cot, L (1996) Synthesis of Alumina Gels in Amphiphilic Media. J. Sol-Gel Sci. Technol., 8, 195-199.
  • Cabrera, S., El Haskouri, J.,Alamo, J.,Beltrán, A.,Beltrán, D.,Mendioroz, S.,Marcos, M.D. and Amorós, P. (1999) Surfactant-Assisted Synthesis of Mesoporous Alumina Showing Continuously Adjustable Pore Sizes. Adv. Mater., 5, 379-381. [CrossRef]
  • Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A.,Beltrán-Porter, D.,Marcos, M.D. and Amorós, P. (2000) Generalised Syntheses of Ordered Mesoporous Oxides: the Atrane Route. Solid State Sci., 2, 405-420. [CrossRef]
  • Bagshaw, S.A. and Pinnavaia, T.J. (1996) Mesoporous Alumina Molecular Sieves. Angew. Chem. Int. Ed. Engl., 10, 1102-1105. [CrossRef]
  • Zhang, W. and Pinnavaia, T.J. (1998) Rare Earth Stabilization of Mesoporous Alumina Molecular Sieves Assembled Through an N0I0 Pathway. Chem. Commun., 1185-1186.
  • Yang, P.,Zhao, D.,Margolese, D.I.,Chmelka, B.F. and Stucky, G.D. (1999) Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework. Chem. Mater., 10, 2813-2826. [CrossRef]
  • Neeraj, M. and Eswaramoorthy, M. (1998) Mesoporous Alumina. Proc. Indian Acad. Sci., Chem. Sci., 2, 143-149.
  • Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B. and Schlenker J.L. (1992) A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc., 114, 10834-10843. [CrossRef]
  • Firouzi, A.,Kumar, D.,Bull, L.M.,Besier, T.,Sieger, P.,Huo, Q.,Walker, S.A.,Zasadzinski, J.A.,Glinka, C.,Nicol, J.,Margolese, D.I.,Stucky, G.D. and Chmelka, B.F. (1995) Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies. Science, 267, 1138-1143. [CrossRef] [PubMed]
  • Zana, R.,Frasch, J.,Soulard, M.,Lebeau, B. and Patarin, J. (1999) Fluorescence Probing Investigations of the Mechanism of Formation of Organized Mesoporous Silica. Langmuir, 15, 2603-2606. [CrossRef]
  • Sicard, L.,Llewellyn, P.L.,Patarin, J. and Kolenda, F. (2001) Investigation of the Mechanism of the Surfactant Removal from a Mesoporous Alumina Prepared in the Presence of Sodium Deodecylsulfate. Microporous Mesoporous Mater., 44-45, 195-201. [CrossRef]
  • Sicard, L.,Frasch, J.,Soulard, M.,Lebeau, B.,Patarin, J.,Davey, T.,Zana, R. and Kolenda, F. (2001) Investigations by Fluorescence Techniques of the Mechanism of Formation of Silica- and Alumina-Based MCM-41-type Materials. Microporous Mesoporous Mater., 44-45, 25-31. [CrossRef]
  • Sicard, L.,Lebeau, B.,Patarin, J. and Zana, R. (2002) Study of the Mechanism of Formation of a Mesostructured Hexagonal Alumina by Means of Fluorescence Probing Techniques. Langmuir, 18, 74-82. [CrossRef]
  • Brunauer, S.,Emmet, P.H. and Teller, E. (1938) Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc., 60, 309-319. [CrossRef]
  • Rouquerol, J., Bord籥, S. and Rouquerol, F. (1992) Controlled Rate Evolved Gas Analysis. Recent Experimental Set-Up and Typical Results. Thermochim. Acta, 203, 193-202. [CrossRef]
  • Somasundaran, P., Huang, L. and Fan, A. (1999) In: Modern Characterization of Surfactant Systems, Surfactant Science Series, Binks, B.P. (Ed.), M. Dekker Inc., New York, 83, 213.
  • White, A.,Walpole, A.,Huang, Y. and Trimm, D.L. (1989) Control of Porosity and Surface Area in Alumina II. Alcohol and Glycol Additives. Appl. Catal., 56, 187-196. [CrossRef]
  • Froba, M. and Tiemann, M. (1998) A New Role of the Surfactant in the Synthesis of Mesostructured Phases: Dodecyl Phosphate as Template and Reactant for Aluminophosphates. Chem. Mater., 10, 3475-3483. [CrossRef]
  • Tiemann, M., Fr�M.,Rapp, G. and Funari, S.S. (2000) Nonaqueous Synthesis of Mesostructured Aluminophosphate/ Surfactant Composites: Synthesis, Characterization, and in situ SAXS studies. Chem. Mater., 12, 1342-1348. [CrossRef]
  • Schulz, M.,Tiemann, M.,Froba, M. and Jager, C. (2000) NMR Characterization of Mesostructured Aluminophosphates. J. Phys. Chem. B., 104, 10473-10481. [CrossRef]
  • Ruiz, C.C. (1999) Micelle Formation and Microenvironmental Properties of Sodium Dodecyl Sulfate in Aqueous Urea Solutions. Colloids Surfaces A., 147, 349-357. [CrossRef]
  • Ruiz, C.C. (1995) A Photophysical Study of the Urea Effect on Micellar Properties of Sodium Dodecyl Sulfate Aqueous Solutions. Colloid Polym. Sci., 273, 1033-1040. [CrossRef]
  • Abuin, E.B.,Lissi, E.A.,Aspee, A.,Gonzalez, F.D. and Vara, J.M. (1997) Fluorescence of 8-anilinonaphthalene-1- sulfonate and Properties of Sodium Dodecyl Sulfate Micelles in Water-Urea Mixtures. J. Colloid Interface Sci., 186, 332-338. [CrossRef] [PubMed]
  • Shen, X.,Belletete, M. and Durocher, G. (1997) Studies of the Inclusion Complexation between a 3 H-Indole and β-Cyclodextrin in the Presence of Urea, Sodium Dodecyl Sulfate, and 1-Propanol. Langmuir, 22, 5830-5836. [CrossRef]
  • Florenzano, F.H., Cardoso dos Santos, L.G.,Cuccovia, I.M.,Scarpa, M.V.,Chaimovich, H. and Politi, M.J. (1996) Urea- Induced Decrease of Anion Selectivity in Surfactant aggregates. Langmuir, 12, 1166-1171. [CrossRef]
  • Asakawa, T.,Hashikawa, M.,Amada, K. and Miyagishi, S. (1995) Effect of Urea on Micelle Formation of Fluorocarbon Surfactants. Langmuir, 11, 2376-2379. [CrossRef]
  • Hao, J.C.,Wang, T.T.,Shi, S.,Lu, R.H. and Wang, H.Q. (1997) Electron Spin Resonance Study of Effect of Urea on Microenvironmental Properties of Alkylbenzene Sulfonate Micellar Solutions. Langmuir, 13, 1897-1900. [CrossRef]
  • Manabe, M.,Koda, M. and Shirihama, K. (1980) The Effect of 1-Alkanols on Ionization of Sodium Dodecyl Sulphate Micelles. J. Colloid Interface Sci., 77, 189-194. [CrossRef]
  • Bonner, O.D.,Bednarek, J.M. and Arisman, R.K. (1977) Heat Capacities of Urea and Water in Water and Dimetylformamide. J. Am. Chem. Soc., 99, 2898-2902. [CrossRef] [PubMed]
  • MacDonald, J.C.,Serphillips, J. and Guerrera, J.J. (1973) Effect of Urea Concentration Upon the Activation Parameters for Fluidity of Water. J. Phys. Chem., 77, 370-372. [CrossRef]
  • Alargova, R.G.,Petkov, D.,Petsev, I.,Broze, G. and Mehreteab, A. (1995) Light Scattering Study of Sodium Dodecyl Polyoxyethylene-2-Sulfonate Micelles in the Presence of Multivalent Counterions. Langmuir, 11, 1530-1536. [CrossRef]
  • Baumueller, W.,Hoffmann, H.,Ulbricht, W.,Tondre, C. and Zana, R. (1978) Chemical Relaxation and Equilibrium Studies of Aqueous Solutions of Lauryl Sulfate Micelles in the Presence of Divalent Metal Ions. J. Colloid Interface Sci., 64, 430-449. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Satake, I.,Iwamatsu, I.,Hosokawa, S. and Matuura, R. (1963) Surface Activities of Bivalent Metal Alkyl Sulfates (I) Micelles of Some Metal Alkyl Sulfates. Bull. Chem. Soc. Jap., 36, 204-209. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.