Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 58, Number 5, September-October 2003
Page(s) 567 - 569
DOI https://doi.org/10.2516/ogst:2003039
Published online 01 December 2006
  • Oberlander, R.K. (1984) Aluminas for Catalysts - Their Preparation and Properties. In: Applied Industrial Catalysis, 3, Leach, B.E., Academic Press, 63-113. [Google Scholar]
  • Brunelle, J.P., Nortier, P. and Poisson, R. (1987) In: Catalysts Supports and Supported Catalysts, Stiles, A.B., Butterworths Ed., 11-55. [Google Scholar]
  • Huo, Q.,Margolese, D.I.,Ciesla, U.,Demuth, D.G.,Feng, P.,Gier, T.E.,Sieger, P.,Firouzi, A.,Chmelka, B.F.,Schüth, F. and Stucky, G.D. (1994) Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays. Chem. Mater., 6, 1176-1191. [CrossRef] [Google Scholar]
  • Huo, Q.,Margolese, D.I.,Ciesla, U.,Feng, P.,Gier, T.E.,Sieger, P.,Leon, R.,Petroff, P.M.,Schüth, F. and Stucky, G.D. (1994) Generalized Synthesis of Periodic Surfactant/ Inorganic Composite Materials. Nature, 368, 317-321. [CrossRef] [Google Scholar]
  • Vaudry, F.,Khodabandeh, S. and Davis, M.E. (1996) Synthesis of Pure Alumina Mesoporous Materials. Chem. Mater., 8, 1451-1464. [CrossRef] [Google Scholar]
  • Liu, X.,Wei, Y.,Jin, D. and Shih, W.H. (2000) Synthesis of Mesoporous Aluminum Oxide with Aluminum Alkoxide and Tartaric Acid. Mater. Lett., 42, 143-149. [CrossRef] [Google Scholar]
  • Valange, S.,Guth, J.L.,Kolenda, F.,Lacombe, S. and Gabelica, Z. (2000) Synthesis Strategies Leading to Surfactant-Assisted Aluminas with Controlled Mesoporosity in Aqueous Media. Microporous Mesoporous Mater., 35-36, 597-607. [CrossRef] [Google Scholar]
  • Stein, A. and Holland, B.T. (1996) Aluminum-Containing Mesostructural Materials. J. Porous Mater., 3, 83-92. [CrossRef] [Google Scholar]
  • Holland, B.T.,Isbester, P.K.,Munson, E.J. and Stein, A. (1999) Transformation of Layered Polyoxometallate Cluster Salts into Mesoporous Materials. Mater. Res. Bull., 34, 471-482. [CrossRef] [MathSciNet] [Google Scholar]
  • Holland, B.T.,Isbester, P.K.,Munson, E.J. and Stein, A. (1999) Transformation of Layered Polyoxometallate Cluster Salts into Mesoporous Materials. Mater. Res. Bull., 34, 471-482. [CrossRef] [MathSciNet] [Google Scholar]
  • Yada, M., Machida, M. and Kijima, T. (1996) Synthesis and Deorganization of an Aluminium-Based Dodecyl Sulphate Mesophase with a Hexagonal Structure. Chem. Commun., 769-770. [Google Scholar]
  • Yada, M.,Hiyoshi, H.,Ohe, K.,Machida, M. and Kijima, T. (1997) Synthesis of Aluminium-Based Surfactant Mesophases Morphologically Controlled Through a Layer to Hexagonal Transition. Inorg. Chem., 36, 5565-5569. [CrossRef] [Google Scholar]
  • Yada, M.,Hiyoshi, H.,Machida, M. and Kijima, T. (1998) Aluminum-Based Surfactant Mesophases Structurally and Morphologically Controlled by Anions. J. Porous Mater., 5, 133-138. [CrossRef] [Google Scholar]
  • Yada, M., Ohya, M., Machida, M. and Kijima, T. (1998) Synthesis of Porous Yttrium Aluminium Oxide Templated by Dodecyl Sulphate Assemblies. Chem. Commun., 1941-1942. [Google Scholar]
  • Yada, M.,Kitamura, H.,Machida, M. and Kijima, T. (1998) Yttrium-based Porous Materials Templated by Anionic Surfactant Assemblies. Inorg. Chem., 37, 6470-6475. [CrossRef] [PubMed] [Google Scholar]
  • Yada, M.,Kitamura, H.,Machida, M. and Kijima, T. (1997) Biomimetic Surface Patterns of Layered Aluminium Oxide Mesophases Templated by Mixed Surfactant Assemblies. Langmuir, 13, 5252-5257. [CrossRef] [Google Scholar]
  • Acosta, S., Ayral, A., Guizard, C. and Cot, L (1996) Synthesis of Alumina Gels in Amphiphilic Media. J. Sol-Gel Sci. Technol., 8, 195-199. [Google Scholar]
  • Cabrera, S., El Haskouri, J.,Alamo, J.,Beltrán, A.,Beltrán, D.,Mendioroz, S.,Marcos, M.D. and Amorós, P. (1999) Surfactant-Assisted Synthesis of Mesoporous Alumina Showing Continuously Adjustable Pore Sizes. Adv. Mater., 5, 379-381. [CrossRef] [Google Scholar]
  • Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A.,Beltrán-Porter, D.,Marcos, M.D. and Amorós, P. (2000) Generalised Syntheses of Ordered Mesoporous Oxides: the Atrane Route. Solid State Sci., 2, 405-420. [CrossRef] [Google Scholar]
  • Bagshaw, S.A. and Pinnavaia, T.J. (1996) Mesoporous Alumina Molecular Sieves. Angew. Chem. Int. Ed. Engl., 10, 1102-1105. [CrossRef] [Google Scholar]
  • Zhang, W. and Pinnavaia, T.J. (1998) Rare Earth Stabilization of Mesoporous Alumina Molecular Sieves Assembled Through an N0I0 Pathway. Chem. Commun., 1185-1186. [Google Scholar]
  • Yang, P.,Zhao, D.,Margolese, D.I.,Chmelka, B.F. and Stucky, G.D. (1999) Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework. Chem. Mater., 10, 2813-2826. [CrossRef] [Google Scholar]
  • Neeraj, M. and Eswaramoorthy, M. (1998) Mesoporous Alumina. Proc. Indian Acad. Sci., Chem. Sci., 2, 143-149. [Google Scholar]
  • Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B. and Schlenker J.L. (1992) A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc., 114, 10834-10843. [CrossRef] [Google Scholar]
  • Firouzi, A.,Kumar, D.,Bull, L.M.,Besier, T.,Sieger, P.,Huo, Q.,Walker, S.A.,Zasadzinski, J.A.,Glinka, C.,Nicol, J.,Margolese, D.I.,Stucky, G.D. and Chmelka, B.F. (1995) Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies. Science, 267, 1138-1143. [CrossRef] [PubMed] [Google Scholar]
  • Zana, R.,Frasch, J.,Soulard, M.,Lebeau, B. and Patarin, J. (1999) Fluorescence Probing Investigations of the Mechanism of Formation of Organized Mesoporous Silica. Langmuir, 15, 2603-2606. [CrossRef] [Google Scholar]
  • Sicard, L.,Llewellyn, P.L.,Patarin, J. and Kolenda, F. (2001) Investigation of the Mechanism of the Surfactant Removal from a Mesoporous Alumina Prepared in the Presence of Sodium Deodecylsulfate. Microporous Mesoporous Mater., 44-45, 195-201. [CrossRef] [Google Scholar]
  • Sicard, L.,Frasch, J.,Soulard, M.,Lebeau, B.,Patarin, J.,Davey, T.,Zana, R. and Kolenda, F. (2001) Investigations by Fluorescence Techniques of the Mechanism of Formation of Silica- and Alumina-Based MCM-41-type Materials. Microporous Mesoporous Mater., 44-45, 25-31. [CrossRef] [Google Scholar]
  • Sicard, L.,Lebeau, B.,Patarin, J. and Zana, R. (2002) Study of the Mechanism of Formation of a Mesostructured Hexagonal Alumina by Means of Fluorescence Probing Techniques. Langmuir, 18, 74-82. [CrossRef] [Google Scholar]
  • Brunauer, S.,Emmet, P.H. and Teller, E. (1938) Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc., 60, 309-319. [CrossRef] [Google Scholar]
  • Rouquerol, J., Bord籥, S. and Rouquerol, F. (1992) Controlled Rate Evolved Gas Analysis. Recent Experimental Set-Up and Typical Results. Thermochim. Acta, 203, 193-202. [CrossRef] [Google Scholar]
  • Somasundaran, P., Huang, L. and Fan, A. (1999) In: Modern Characterization of Surfactant Systems, Surfactant Science Series, Binks, B.P. (Ed.), M. Dekker Inc., New York, 83, 213. [Google Scholar]
  • White, A.,Walpole, A.,Huang, Y. and Trimm, D.L. (1989) Control of Porosity and Surface Area in Alumina II. Alcohol and Glycol Additives. Appl. Catal., 56, 187-196. [CrossRef] [Google Scholar]
  • Froba, M. and Tiemann, M. (1998) A New Role of the Surfactant in the Synthesis of Mesostructured Phases: Dodecyl Phosphate as Template and Reactant for Aluminophosphates. Chem. Mater., 10, 3475-3483. [CrossRef] [Google Scholar]
  • Tiemann, M., Fr�M.,Rapp, G. and Funari, S.S. (2000) Nonaqueous Synthesis of Mesostructured Aluminophosphate/ Surfactant Composites: Synthesis, Characterization, and in situ SAXS studies. Chem. Mater., 12, 1342-1348. [CrossRef] [Google Scholar]
  • Schulz, M.,Tiemann, M.,Froba, M. and Jager, C. (2000) NMR Characterization of Mesostructured Aluminophosphates. J. Phys. Chem. B., 104, 10473-10481. [CrossRef] [Google Scholar]
  • Ruiz, C.C. (1999) Micelle Formation and Microenvironmental Properties of Sodium Dodecyl Sulfate in Aqueous Urea Solutions. Colloids Surfaces A., 147, 349-357. [CrossRef] [Google Scholar]
  • Ruiz, C.C. (1995) A Photophysical Study of the Urea Effect on Micellar Properties of Sodium Dodecyl Sulfate Aqueous Solutions. Colloid Polym. Sci., 273, 1033-1040. [CrossRef] [Google Scholar]
  • Abuin, E.B.,Lissi, E.A.,Aspee, A.,Gonzalez, F.D. and Vara, J.M. (1997) Fluorescence of 8-anilinonaphthalene-1- sulfonate and Properties of Sodium Dodecyl Sulfate Micelles in Water-Urea Mixtures. J. Colloid Interface Sci., 186, 332-338. [CrossRef] [PubMed] [Google Scholar]
  • Shen, X.,Belletete, M. and Durocher, G. (1997) Studies of the Inclusion Complexation between a 3 H-Indole and β-Cyclodextrin in the Presence of Urea, Sodium Dodecyl Sulfate, and 1-Propanol. Langmuir, 22, 5830-5836. [CrossRef] [Google Scholar]
  • Florenzano, F.H., Cardoso dos Santos, L.G.,Cuccovia, I.M.,Scarpa, M.V.,Chaimovich, H. and Politi, M.J. (1996) Urea- Induced Decrease of Anion Selectivity in Surfactant aggregates. Langmuir, 12, 1166-1171. [CrossRef] [Google Scholar]
  • Asakawa, T.,Hashikawa, M.,Amada, K. and Miyagishi, S. (1995) Effect of Urea on Micelle Formation of Fluorocarbon Surfactants. Langmuir, 11, 2376-2379. [CrossRef] [Google Scholar]
  • Hao, J.C.,Wang, T.T.,Shi, S.,Lu, R.H. and Wang, H.Q. (1997) Electron Spin Resonance Study of Effect of Urea on Microenvironmental Properties of Alkylbenzene Sulfonate Micellar Solutions. Langmuir, 13, 1897-1900. [CrossRef] [Google Scholar]
  • Manabe, M.,Koda, M. and Shirihama, K. (1980) The Effect of 1-Alkanols on Ionization of Sodium Dodecyl Sulphate Micelles. J. Colloid Interface Sci., 77, 189-194. [CrossRef] [Google Scholar]
  • Bonner, O.D.,Bednarek, J.M. and Arisman, R.K. (1977) Heat Capacities of Urea and Water in Water and Dimetylformamide. J. Am. Chem. Soc., 99, 2898-2902. [CrossRef] [PubMed] [Google Scholar]
  • MacDonald, J.C.,Serphillips, J. and Guerrera, J.J. (1973) Effect of Urea Concentration Upon the Activation Parameters for Fluidity of Water. J. Phys. Chem., 77, 370-372. [CrossRef] [Google Scholar]
  • Alargova, R.G.,Petkov, D.,Petsev, I.,Broze, G. and Mehreteab, A. (1995) Light Scattering Study of Sodium Dodecyl Polyoxyethylene-2-Sulfonate Micelles in the Presence of Multivalent Counterions. Langmuir, 11, 1530-1536. [CrossRef] [Google Scholar]
  • Baumueller, W.,Hoffmann, H.,Ulbricht, W.,Tondre, C. and Zana, R. (1978) Chemical Relaxation and Equilibrium Studies of Aqueous Solutions of Lauryl Sulfate Micelles in the Presence of Divalent Metal Ions. J. Colloid Interface Sci., 64, 430-449. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Satake, I.,Iwamatsu, I.,Hosokawa, S. and Matuura, R. (1963) Surface Activities of Bivalent Metal Alkyl Sulfates (I) Micelles of Some Metal Alkyl Sulfates. Bull. Chem. Soc. Jap., 36, 204-209. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.