Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 58, Numéro 5, September-October 2003
Page(s) 567 - 569
DOI https://doi.org/10.2516/ogst:2003039
Publié en ligne 1 décembre 2006
  • Oberlander, R.K. (1984) Aluminas for Catalysts - Their Preparation and Properties. In: Applied Industrial Catalysis, 3, Leach, B.E., Academic Press, 63-113. [Google Scholar]
  • Brunelle, J.P., Nortier, P. and Poisson, R. (1987) In: Catalysts Supports and Supported Catalysts, Stiles, A.B., Butterworths Ed., 11-55. [Google Scholar]
  • Huo, Q.,Margolese, D.I.,Ciesla, U.,Demuth, D.G.,Feng, P.,Gier, T.E.,Sieger, P.,Firouzi, A.,Chmelka, B.F.,Schüth, F. and Stucky, G.D. (1994) Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays. Chem. Mater., 6, 1176-1191. [CrossRef] [Google Scholar]
  • Huo, Q.,Margolese, D.I.,Ciesla, U.,Feng, P.,Gier, T.E.,Sieger, P.,Leon, R.,Petroff, P.M.,Schüth, F. and Stucky, G.D. (1994) Generalized Synthesis of Periodic Surfactant/ Inorganic Composite Materials. Nature, 368, 317-321. [CrossRef] [Google Scholar]
  • Vaudry, F.,Khodabandeh, S. and Davis, M.E. (1996) Synthesis of Pure Alumina Mesoporous Materials. Chem. Mater., 8, 1451-1464. [CrossRef] [Google Scholar]
  • Liu, X.,Wei, Y.,Jin, D. and Shih, W.H. (2000) Synthesis of Mesoporous Aluminum Oxide with Aluminum Alkoxide and Tartaric Acid. Mater. Lett., 42, 143-149. [CrossRef] [Google Scholar]
  • Valange, S.,Guth, J.L.,Kolenda, F.,Lacombe, S. and Gabelica, Z. (2000) Synthesis Strategies Leading to Surfactant-Assisted Aluminas with Controlled Mesoporosity in Aqueous Media. Microporous Mesoporous Mater., 35-36, 597-607. [CrossRef] [Google Scholar]
  • Stein, A. and Holland, B.T. (1996) Aluminum-Containing Mesostructural Materials. J. Porous Mater., 3, 83-92. [CrossRef] [Google Scholar]
  • Holland, B.T.,Isbester, P.K.,Munson, E.J. and Stein, A. (1999) Transformation of Layered Polyoxometallate Cluster Salts into Mesoporous Materials. Mater. Res. Bull., 34, 471-482. [CrossRef] [MathSciNet] [Google Scholar]
  • Holland, B.T.,Isbester, P.K.,Munson, E.J. and Stein, A. (1999) Transformation of Layered Polyoxometallate Cluster Salts into Mesoporous Materials. Mater. Res. Bull., 34, 471-482. [CrossRef] [MathSciNet] [Google Scholar]
  • Yada, M., Machida, M. and Kijima, T. (1996) Synthesis and Deorganization of an Aluminium-Based Dodecyl Sulphate Mesophase with a Hexagonal Structure. Chem. Commun., 769-770. [Google Scholar]
  • Yada, M.,Hiyoshi, H.,Ohe, K.,Machida, M. and Kijima, T. (1997) Synthesis of Aluminium-Based Surfactant Mesophases Morphologically Controlled Through a Layer to Hexagonal Transition. Inorg. Chem., 36, 5565-5569. [CrossRef] [Google Scholar]
  • Yada, M.,Hiyoshi, H.,Machida, M. and Kijima, T. (1998) Aluminum-Based Surfactant Mesophases Structurally and Morphologically Controlled by Anions. J. Porous Mater., 5, 133-138. [CrossRef] [Google Scholar]
  • Yada, M., Ohya, M., Machida, M. and Kijima, T. (1998) Synthesis of Porous Yttrium Aluminium Oxide Templated by Dodecyl Sulphate Assemblies. Chem. Commun., 1941-1942. [Google Scholar]
  • Yada, M.,Kitamura, H.,Machida, M. and Kijima, T. (1998) Yttrium-based Porous Materials Templated by Anionic Surfactant Assemblies. Inorg. Chem., 37, 6470-6475. [CrossRef] [PubMed] [Google Scholar]
  • Yada, M.,Kitamura, H.,Machida, M. and Kijima, T. (1997) Biomimetic Surface Patterns of Layered Aluminium Oxide Mesophases Templated by Mixed Surfactant Assemblies. Langmuir, 13, 5252-5257. [CrossRef] [Google Scholar]
  • Acosta, S., Ayral, A., Guizard, C. and Cot, L (1996) Synthesis of Alumina Gels in Amphiphilic Media. J. Sol-Gel Sci. Technol., 8, 195-199. [Google Scholar]
  • Cabrera, S., El Haskouri, J.,Alamo, J.,Beltrán, A.,Beltrán, D.,Mendioroz, S.,Marcos, M.D. and Amorós, P. (1999) Surfactant-Assisted Synthesis of Mesoporous Alumina Showing Continuously Adjustable Pore Sizes. Adv. Mater., 5, 379-381. [CrossRef] [Google Scholar]
  • Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A.,Beltrán-Porter, D.,Marcos, M.D. and Amorós, P. (2000) Generalised Syntheses of Ordered Mesoporous Oxides: the Atrane Route. Solid State Sci., 2, 405-420. [CrossRef] [Google Scholar]
  • Bagshaw, S.A. and Pinnavaia, T.J. (1996) Mesoporous Alumina Molecular Sieves. Angew. Chem. Int. Ed. Engl., 10, 1102-1105. [CrossRef] [Google Scholar]
  • Zhang, W. and Pinnavaia, T.J. (1998) Rare Earth Stabilization of Mesoporous Alumina Molecular Sieves Assembled Through an N0I0 Pathway. Chem. Commun., 1185-1186. [Google Scholar]
  • Yang, P.,Zhao, D.,Margolese, D.I.,Chmelka, B.F. and Stucky, G.D. (1999) Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework. Chem. Mater., 10, 2813-2826. [CrossRef] [Google Scholar]
  • Neeraj, M. and Eswaramoorthy, M. (1998) Mesoporous Alumina. Proc. Indian Acad. Sci., Chem. Sci., 2, 143-149. [Google Scholar]
  • Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B. and Schlenker J.L. (1992) A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc., 114, 10834-10843. [CrossRef] [Google Scholar]
  • Firouzi, A.,Kumar, D.,Bull, L.M.,Besier, T.,Sieger, P.,Huo, Q.,Walker, S.A.,Zasadzinski, J.A.,Glinka, C.,Nicol, J.,Margolese, D.I.,Stucky, G.D. and Chmelka, B.F. (1995) Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies. Science, 267, 1138-1143. [CrossRef] [PubMed] [Google Scholar]
  • Zana, R.,Frasch, J.,Soulard, M.,Lebeau, B. and Patarin, J. (1999) Fluorescence Probing Investigations of the Mechanism of Formation of Organized Mesoporous Silica. Langmuir, 15, 2603-2606. [CrossRef] [Google Scholar]
  • Sicard, L.,Llewellyn, P.L.,Patarin, J. and Kolenda, F. (2001) Investigation of the Mechanism of the Surfactant Removal from a Mesoporous Alumina Prepared in the Presence of Sodium Deodecylsulfate. Microporous Mesoporous Mater., 44-45, 195-201. [CrossRef] [Google Scholar]
  • Sicard, L.,Frasch, J.,Soulard, M.,Lebeau, B.,Patarin, J.,Davey, T.,Zana, R. and Kolenda, F. (2001) Investigations by Fluorescence Techniques of the Mechanism of Formation of Silica- and Alumina-Based MCM-41-type Materials. Microporous Mesoporous Mater., 44-45, 25-31. [CrossRef] [Google Scholar]
  • Sicard, L.,Lebeau, B.,Patarin, J. and Zana, R. (2002) Study of the Mechanism of Formation of a Mesostructured Hexagonal Alumina by Means of Fluorescence Probing Techniques. Langmuir, 18, 74-82. [CrossRef] [Google Scholar]
  • Brunauer, S.,Emmet, P.H. and Teller, E. (1938) Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc., 60, 309-319. [CrossRef] [Google Scholar]
  • Rouquerol, J., Bord籥, S. and Rouquerol, F. (1992) Controlled Rate Evolved Gas Analysis. Recent Experimental Set-Up and Typical Results. Thermochim. Acta, 203, 193-202. [CrossRef] [Google Scholar]
  • Somasundaran, P., Huang, L. and Fan, A. (1999) In: Modern Characterization of Surfactant Systems, Surfactant Science Series, Binks, B.P. (Ed.), M. Dekker Inc., New York, 83, 213. [Google Scholar]
  • White, A.,Walpole, A.,Huang, Y. and Trimm, D.L. (1989) Control of Porosity and Surface Area in Alumina II. Alcohol and Glycol Additives. Appl. Catal., 56, 187-196. [CrossRef] [Google Scholar]
  • Froba, M. and Tiemann, M. (1998) A New Role of the Surfactant in the Synthesis of Mesostructured Phases: Dodecyl Phosphate as Template and Reactant for Aluminophosphates. Chem. Mater., 10, 3475-3483. [CrossRef] [Google Scholar]
  • Tiemann, M., Fr�M.,Rapp, G. and Funari, S.S. (2000) Nonaqueous Synthesis of Mesostructured Aluminophosphate/ Surfactant Composites: Synthesis, Characterization, and in situ SAXS studies. Chem. Mater., 12, 1342-1348. [CrossRef] [Google Scholar]
  • Schulz, M.,Tiemann, M.,Froba, M. and Jager, C. (2000) NMR Characterization of Mesostructured Aluminophosphates. J. Phys. Chem. B., 104, 10473-10481. [CrossRef] [Google Scholar]
  • Ruiz, C.C. (1999) Micelle Formation and Microenvironmental Properties of Sodium Dodecyl Sulfate in Aqueous Urea Solutions. Colloids Surfaces A., 147, 349-357. [CrossRef] [Google Scholar]
  • Ruiz, C.C. (1995) A Photophysical Study of the Urea Effect on Micellar Properties of Sodium Dodecyl Sulfate Aqueous Solutions. Colloid Polym. Sci., 273, 1033-1040. [CrossRef] [Google Scholar]
  • Abuin, E.B.,Lissi, E.A.,Aspee, A.,Gonzalez, F.D. and Vara, J.M. (1997) Fluorescence of 8-anilinonaphthalene-1- sulfonate and Properties of Sodium Dodecyl Sulfate Micelles in Water-Urea Mixtures. J. Colloid Interface Sci., 186, 332-338. [CrossRef] [PubMed] [Google Scholar]
  • Shen, X.,Belletete, M. and Durocher, G. (1997) Studies of the Inclusion Complexation between a 3 H-Indole and β-Cyclodextrin in the Presence of Urea, Sodium Dodecyl Sulfate, and 1-Propanol. Langmuir, 22, 5830-5836. [CrossRef] [Google Scholar]
  • Florenzano, F.H., Cardoso dos Santos, L.G.,Cuccovia, I.M.,Scarpa, M.V.,Chaimovich, H. and Politi, M.J. (1996) Urea- Induced Decrease of Anion Selectivity in Surfactant aggregates. Langmuir, 12, 1166-1171. [CrossRef] [Google Scholar]
  • Asakawa, T.,Hashikawa, M.,Amada, K. and Miyagishi, S. (1995) Effect of Urea on Micelle Formation of Fluorocarbon Surfactants. Langmuir, 11, 2376-2379. [CrossRef] [Google Scholar]
  • Hao, J.C.,Wang, T.T.,Shi, S.,Lu, R.H. and Wang, H.Q. (1997) Electron Spin Resonance Study of Effect of Urea on Microenvironmental Properties of Alkylbenzene Sulfonate Micellar Solutions. Langmuir, 13, 1897-1900. [CrossRef] [Google Scholar]
  • Manabe, M.,Koda, M. and Shirihama, K. (1980) The Effect of 1-Alkanols on Ionization of Sodium Dodecyl Sulphate Micelles. J. Colloid Interface Sci., 77, 189-194. [CrossRef] [Google Scholar]
  • Bonner, O.D.,Bednarek, J.M. and Arisman, R.K. (1977) Heat Capacities of Urea and Water in Water and Dimetylformamide. J. Am. Chem. Soc., 99, 2898-2902. [CrossRef] [PubMed] [Google Scholar]
  • MacDonald, J.C.,Serphillips, J. and Guerrera, J.J. (1973) Effect of Urea Concentration Upon the Activation Parameters for Fluidity of Water. J. Phys. Chem., 77, 370-372. [CrossRef] [Google Scholar]
  • Alargova, R.G.,Petkov, D.,Petsev, I.,Broze, G. and Mehreteab, A. (1995) Light Scattering Study of Sodium Dodecyl Polyoxyethylene-2-Sulfonate Micelles in the Presence of Multivalent Counterions. Langmuir, 11, 1530-1536. [CrossRef] [Google Scholar]
  • Baumueller, W.,Hoffmann, H.,Ulbricht, W.,Tondre, C. and Zana, R. (1978) Chemical Relaxation and Equilibrium Studies of Aqueous Solutions of Lauryl Sulfate Micelles in the Presence of Divalent Metal Ions. J. Colloid Interface Sci., 64, 430-449. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Satake, I.,Iwamatsu, I.,Hosokawa, S. and Matuura, R. (1963) Surface Activities of Bivalent Metal Alkyl Sulfates (I) Micelles of Some Metal Alkyl Sulfates. Bull. Chem. Soc. Jap., 36, 204-209. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.