Dossier: IFP International Workshop "Microbiology of Hydrocarbons: State of the Art and Perspectives"
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 58, Number 4, July-August 2003
Dossier: IFP International Workshop "Microbiology of Hydrocarbons: State of the Art and Perspectives"
Page(s) 427 - 440
DOI https://doi.org/10.2516/ogst:2003026
Published online 01 December 2006
  • Rosenberg, E., and Ron, E.Z. (1996) Bioremediation of Petroleum Contamination, in Bioremediation: Principles and Applications, Crawford, R.L., and Crawford, D.L. (Eds.) Cambridge University Press, Cambridge. [Google Scholar]
  • National Research Council (2002) Oil in the Sea III: Inputs, Fates, and Effects, National Academy Press, Washington DC. [Google Scholar]
  • Söhngen, N.L. (1906) Ueber Bakterien, welche Methan als Kohlenstoffnahrung und Energiequelle gebrauchen. Centralbl. Bakt. etc. Abt. II, 15, 513-517. [Google Scholar]
  • Söhngen, N.L. (1913) Benzin, Petroleum, Paraffinöl und Paraffin als Kohlenstoff- und Energiequelle für Mikroben. Zentr. Bacteriol. Parasitenk., Abt. II, 37, 595-609. [Google Scholar]
  • Brisbane, P.G., and Ladd, J.N. (1965) The Role of Microorganisms in Petroleum Exploration. Annu. Rev. Microbiol., 19. [Google Scholar]
  • Boulton, C.A., and Ratledge, C. (1984) The Physiology of Hydrocarbon-Utilizing Microorganisms. Top. Enzyme Ferment. Biotechnol., 9, 11-77. [Google Scholar]
  • B� M., and Schindler, J. (1984) Aliphatic Hydrocarbons. In: Biotransformations, Kieslich, K. (Ed.), Verlag Chemie Weinheim, Weinheim. [Google Scholar]
  • Steffan, R.J.,McClay, K.,Vainberg, S.,Condee, C.W., and Zhang, D. (1997) Biodegradation of the Gasoline Oxygenates Methyl Tert-Butyl Ether, Ethyl Tert-Butyl Ether, and Tert- Amyl Methyl Ether by Propane-Oxidizing Bacteria. Appl. Environ. Microbiol., 63, 4216-4222. [PubMed] [Google Scholar]
  • Chang, H.S., and AlvarezCohen, L. (1995) Transformation Capacities of Chlorinated Organics by Mixed Cultures Enriched on Methane, Propane, Toluene, or Phenol. Biotechnol. Bioeng., 45, 440-449. [CrossRef] [PubMed] [Google Scholar]
  • Britton, L.N. (1984) Microbial Degradation of Aliphatic Hydrocarbons. In: Microbial Degradation of Organic Compounds Gibson, D.T. (Ed.) Marcel Dekker, New York. [Google Scholar]
  • Hamamura, N.,Storfa, R.T.,Semprini, L., and Arp, D.J. (1999) Diversity in Butane Monooxygenases Among Butane- Grown Bacteria. Appl. Environ. Microbiol., 65, 4586-4593. [PubMed] [Google Scholar]
  • Murrell, J.C.,Gilbert, B., and McDonald, I.R. (2000) Molecular Biology and Regulation of Methane Monooxygenase. Arch. Microbiol., 173, 325-332. [CrossRef] [PubMed] [Google Scholar]
  • Labinger, J.A., and Bercaw, J.E. (2002) Understanding and Exploiting C-H Bond Activation. Nature, 417, 507-514. [CrossRef] [PubMed] [Google Scholar]
  • Heider, J.,Spormann, A.M.,Beller, H.R., and Widdel, F. (1998) Anaerobic Bacterial Metabolism of Hydrocarbons. FEMS Microbiol. Rev., 22, 5, 459-473. [CrossRef] [Google Scholar]
  • Hayaishi, O.,Katagiri, M., and Rothberg, S. (1955) Mechanism of the Pyrocatechase Reaction. J. Am. Chem. Soc., 77, 5450-5451. [CrossRef] [Google Scholar]
  • Witholt, B., de Smet, M.J.,Kingma, J., van Beilen, J.B.,Kok, M.,Lageveen, R.G., and Eggink, G. (1990) Bioconversions of Aliphatic Compounds by Pseudomonas oleovorans in Multiphase Biorectors: Background and Economic Potential. Trends Biotechnol., 8, 46-52. [CrossRef] [PubMed] [Google Scholar]
  • Li, Z.,Feiten, H.J.,Chang, D.,Duetz, W.A., van Beilen, J.B., and Witholt, B. (2001) Preparation of (R)- and (S)-NProtected- 3-Hydroxypyrrolidines by Hydroxylation with Sphingomonas sp. HXN-200, a Highly Active, Regio-and Stereoselective, and Easy to Handle Biocatalyst. J. Org. Chem., 66, 8424-8430. [CrossRef] [PubMed] [Google Scholar]
  • Watkinson, R.J., and Morgan, P. (1990) Physiology of Aliphatic Hydrocarbon-Degrading Micro-Organisms. Biodegradation, 1, 79-92. [CrossRef] [PubMed] [Google Scholar]
  • Ashraf, W.,Mihdhir, A., and Murrell, J.C. (1994) Bacterial Oxidation of Propane. FEMS Microbiol. Lett., 122, 1-6. [CrossRef] [PubMed] [Google Scholar]
  • Sullivan, J.P.,Dickinson, D., and Chase, H.A. (1998) Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and their Application to Bioremediation. Crit. Rev. Microbiol., 24, 335-373. [CrossRef] [PubMed] [Google Scholar]
  • Whyte, L.G.,Hawari, J.,Zhou, E.,Bourbonnière, L.,Inniss, W.E., and Greer, C.W. (1998) Biodegradation of Variable- Chain-Length Alkanes at Low Temperatures by a Psychrotrophic Rhodococcus sp. Appl. Environ. Microbiol., 64, 2578-2584. [Google Scholar]
  • Forney, F.W., and Markovetz, A.J. (1970) Subterminal Oxidation of Aliphatic Hydrocarbons. J. Bacteriol., 102, 281-282. [PubMed] [Google Scholar]
  • Forney, F.W., and Markovetz, A.J. (1968) Oxidative Degradation of Methyl Ketones II. Chemical Pathway for Degradation of 2-Tridecanone by Pseudomonas multivorans and Pseudomonas aeruginosa. J. Bacteriol., 96, 1055-1064. [Google Scholar]
  • Forney, F.W.,Markovetz, A.J., and Kallio, R.E. (1967) Bacterial Oxidation of 2-Tridecanone to 1-Undecanol. J. Bacteriol., 93, 649-655. [PubMed] [Google Scholar]
  • Britton, L.N., and Markovetz, A.J. (1977) A Novel Ketone Monooxygenase from Pseudomonas cepacia. Purification and Properties. J. Biol. Chem., 252, 8561-8566. [PubMed] [Google Scholar]
  • Shum, A.C., and Markovetz, A.J. (1974) Purification and Properties of Undecyl Acetate Esterase from Pseudomonas cepacia Grown on 2-Tridecanone. J. Bacteriol., 118, 880-889. [PubMed] [Google Scholar]
  • Scheller, U.,Zimmer, T.,Becher, D.,Schauer, F., and Schunck, W.H. (1998) Oxygenation Cascade in Conversion of n-Alkanes to α,ω-Dioic Acids Catalyzed by Cytochrome P450 52A3. J. Biol. Chem., 273, 32528-32534. [CrossRef] [PubMed] [Google Scholar]
  • Broadway, N.M.,Dickinson, F.M., and Ratledge, C. (1993) The Enzymology of Dicarboxylic Acid Formation by Corynebacterium sp. Strain 7E1C Grown on n-Alkanes. J. Gen. Microbiol., 139, 1337-1344. [CrossRef] [Google Scholar]
  • Iida, T.,Sumita, T.,Ohta, A., and Takagi, M. (2000) The Cytochrome P450ALK Multigene Family of an n-Alkane- Assimilating Yeast, Yarrowia lipolytica: Cloning and Characterization of Genes Coding for New CYP52 Family Members. Yeast, 16, 1077-1087. [CrossRef] [PubMed] [Google Scholar]
  • Maier, T.,Foerster, H.H.,Asperger, O., and Hahn, U. (2001) Molecular Characterization of the 56-kDa CYP153 from Acinetobacter sp. EB104. Biochem. Biophys. Res. Commun., 286, 652-658. [CrossRef] [PubMed] [Google Scholar]
  • Cardini, G., and Jurtshuk, P. (1968) Cytochrome P-450 Involvement in the Oxidation of n-Octane by Cell-Free Extracts of Corynebacterium sp. Strain 7E1C. J. Biol. Chem., 243, 6070-6072. [PubMed] [Google Scholar]
  • Hamamura, N.,Yeager, C. M., and Arp, D. J. (2001) Two Distinct Monooxygenases for Alkane Oxidation in Nocardioides sp. Strain CF8. Appl. Environ. Microbiol., 67, 4992-4998. [CrossRef] [PubMed] [Google Scholar]
  • Sluis, M.K., Sayavedra Soto, L.A., and Arp, D.J. (2002) Molecular Analysis of the Soluble Butane Monooxygenase from "Pseudomonas butanovora". Microbiology, 148, 3617-3629. [Google Scholar]
  • Smits, T.H.M.,Balada, S.B.,Witholt, B., and van Beilen, J.B. (2002) Functional Analysis of Alkane Hydroxylases from Gram-Negative and Gram-Positive Bacteria. J. Bacteriol., 184, 1733-1742. [CrossRef] [PubMed] [Google Scholar]
  • Maeng, J.H.,Sakai, Y.,Tani, Y., and Kato, N. (1996) Isolation and Characterization of a Novel Oxygenase that Catalyzes the First Step of n-Alkane Oxidation in Acinetobacter sp Strain M-1. J. Bacteriol., 178, 3695-3700. [CrossRef] [PubMed] [Google Scholar]
  • Pandey, K.K.,Mayilray, S., and Chakrabarti, T. (2002) Pseudomonas indica sp. Nov., a Novel Butane Utilizing Species. Int. J. Syst. Evol. Microbiol., 52, 1559-1567. [PubMed] [Google Scholar]
  • Padda, R S., Pandey, K.K., Kaul, S., Nair, V D.,Jain, R.K.,Basu, S.K., and Chakrabarti, T. (2001) A Novel Gene Encoding a 54 kDa Polypeptide is Essential for Butane Utilization by Pseudomonas sp. IMT37. Microbiology, 147, 2479-2491. [CrossRef] [PubMed] [Google Scholar]
  • Babu, J.P., and Brown, L.R. (1984) New Type of Oxygenase Involved in the Metabolism of Propane and Isobutane. Appl. Environ. Microbiol., 48, 260-264. [PubMed] [Google Scholar]
  • Baptist, J.N.,Gholson, R.K., and Coon, M.J. (1963) Hydrocarbon Oxidation by a Bacterial Enzyme System: I Products of Octane Oxidation. Biochim. Biophys. Acta, 69, 40-47. [CrossRef] [PubMed] [Google Scholar]
  • van Beilen, J.B.,Wubbolts, M.G., and Witholt, B. (1994) Genetics of Alkane Oxidation by Pseudomonas oleovorans. Biodegradation, 5, 161-174. [CrossRef] [PubMed] [Google Scholar]
  • van Beilen, J.B., Panke, S., Lucchini, S., Franchini, A.G., R�isberger, M., and Witholt, B. (2001) Analysis of Pseudomonas putida Alkane Degradation Gene Clusters and Flanking Insertion Sequences: Evolution and Regulation of the Alk-Genes. Microbiology, 147, 1621-1630. [Google Scholar]
  • McKenna, E.J., and Coon, M.J. (1970) Enzymatic ?-Oxidation. IV. Purification and Properties of the ?-Hydroxylase of Pseudomonas Oleovorans. J. Biol. Chem., 245, 3882-3889. [Google Scholar]
  • Kok, M.,Oldenhuis, R., van der Linden, M.P.G.,Raatjes, P.,Kingma, J., van Lelyveld, P.H., and Witholt, B. (1989) The Pseudomonas oleovorans Alkane Hydroxylase Gene. Sequence and Expression. J. Biol. Chem., 264, 5435-5441. [PubMed] [Google Scholar]
  • van Beilen, J.B.,Penninga, D., and Witholt, B. (1992) Topology of the Membrane-Bound Alkane Hydroxylase of Pseudomonas oleovorans. J. Biol. Chem., 267, 9194-9201. [Google Scholar]
  • Peterson, J.A., and Coon, M J. (1968) Enzymatic ?- oxidation. III. Purification and Properties of Rubredoxin, a Component of the ?-Hydroxylation System of Pseudomonas oleovorans. J. Biol. Chem., 243, 329-334. [Google Scholar]
  • Kok, M.,Oldenhuis, R., van der Linden, M.P.G.,Meulenberg, C.H.C.,Kingma, J., and Witholt, B. (1989) The Pseudomonas oleovorans AlkBAC Operon Encodes Two Structurally Related Rubredoxins and an Aldehyde Dehydrogenase. J. Biol. Chem., 264, 5442-5451. [PubMed] [Google Scholar]
  • van Beilen, J.B.,Neuenschwander, M.,Smits, T.H.M.,Roth, C.,Balada, S.B., and Witholt, B. (2002) Rubredoxins Involved in Alkane Oxidation. J. Bacteriol., 184, 1722-1732. [CrossRef] [PubMed] [Google Scholar]
  • Ueda, T., and Coon, M.J. (1972) Enzymatic ?-Oxidation. VII. Reduced Diphosphopyridine Nucleotide-Rubredoxin Reductase: Properties and Function as an Electron Carrier in ?-Hydroxylation. J. Biol. Chem., 247, 5010-5016. [PubMed] [Google Scholar]
  • Eggink, G.,Engel, H.,Vriend, G.,Terpstra, P., and Witholt, B. (1990) Rubredoxin Reductase of Pseudomonas oleovorans. Structural Relationship to Other Flavoprotein Oxidoreductases Based on One NAD and Two FAD Fingerprints. J. Mol. Biol., 212, 135-142. [CrossRef] [Google Scholar]
  • Smits, T.H.M.,Röthlisberger, M.,Witholt, B., and van Beilen, J.B. (1999) Molecular Screening for Alkane Hydroxylase Genes in Gram-Negative and Gram-Positive Strains. Environ. Microbiol., 1, 307-318. [CrossRef] [PubMed] [Google Scholar]
  • Shanklin, J.,Whittle, E., and Fox, B.G. (1994) Eight Histidine Residues are Catalytically Essential in a Membrane-Associated Iron Enzyme, Stearoyl-CoA Desaturase, and are Conserved in Alkane Hydroxylase and Xylene Monooxygenase. Biochem., 33, 12787-12794. [CrossRef] [Google Scholar]
  • Ratajczak, A.,Geißdörfer, W., and Hillen, W. (1998) Alkane Hydroxylase from Acinetobacter sp. Strain ADP-1 is Encoded by alkM and Belongs to a New Family of Bacterial Integral-Membrane Hydrocarbon Hydroxylases. Appl. Environ. Microbiol., 64, 1175-1179. [PubMed] [Google Scholar]
  • Marin, M.M.,Smits, T.H.M., van Beilen, J.B., and Rojo, F. (2001) The Alkane Hydroxylase Gene of Burkholderia Cepacia RR10 is Under Catabolite Repression Control. J. Bacteriol., 183, 4202-4209. [CrossRef] [PubMed] [Google Scholar]
  • Tani, A.,Ishige, T.,Sakai, Y., and Kato, N. (2001) Gene Structures and Regulation of the Alkane Hydroxylase Complex in Acinetobacter sp. Strain M-1. J. Bacteriol., 183, 1819-1823. [CrossRef] [PubMed] [Google Scholar]
  • van Beilen, J.B.,Kingma, J., and Witholt, B. (1994) Substrate Specificity of the Alkane Hydroxylase of Pseudomonas oleovorans GPo1. Enzyme Microb. Technol., 16, 904-911. [CrossRef] [Google Scholar]
  • Yadav, J.S., and Loper, J.C. (1999) Multiple P450alk (Cytochrome P450 Alkane Hydroxylase) Genes from the Halotolerant Yeast Debaryomyces Hansenii. Gene, 226, 139-146. [Google Scholar]
  • Ohkuma, M.,Zimmer, T.,Iida, T.,Schunck, W.H.,Ohta, A., and Takagi, M. (1998) Isozyme Function of n-Alkane- Inducible Cytochromes P450 in Candida Maltosa Revealed by Sequential Gene Disruption. J. Biol. Chem., 273, 3948-3953. [CrossRef] [PubMed] [Google Scholar]
  • Schmitz, C.,Goebel, I.,Wagner, S.,Vomberg, A., and Klinner, U. (2000) Competition Between n-Alkane- Assimilating Yeasts and Bacteria During Colonization of Sandy Soil Microcosms. Appl. Microbiol. Biotechnol., 54, 126-132. [CrossRef] [PubMed] [Google Scholar]
  • Cardini, G., and Jurtshuk, P. (1970) The Enzymatic Hydroxylation of n-Octane by Corynebacterium sp. Strain 7E1C. J. Biol. Chem., 245, 2789-2796. [PubMed] [Google Scholar]
  • Müller, R.,Asperger, O., and Kleber, H.P. (1989) Purification of Cytochrome P-450 from n-Hexadecane- Grown Acinetobacter Calcoaceticus. Biomed. Biochem. Acta., 48, 243-254. [Google Scholar]
  • Munro, A.W., and Lindsay, J.G. (1996) Bacterial Cytochromes P-450. Mol. Microbiol., 20, 1115-1125. [CrossRef] [PubMed] [Google Scholar]
  • Jenkins, P.G.,Raboin, D., and Moran, F. (1972) Mutants of Mycobacterium Rhodochrous with Modified Patterns of n-Paraffin Utilization. J. Gen. Microbiol., 72, 395-398. [CrossRef] [Google Scholar]
  • Van der Linden, A.C., and Van RavenswaayClaasen, J.C. (1971) Hydrophobic Enzymes in Hydrocarbon Degradation. Lipids, 6, 437-443. [CrossRef] [PubMed] [Google Scholar]
  • Azoulay, E.,Chouteau, J., and Davidovics, G. (1963) Isolement et Caractérisation des enzymes responsables de l’oxydation des hydrocarbures. Biochim. Biophys. Acta, 77, 554-567. [CrossRef] [Google Scholar]
  • Vandecasteele, J.P.,Blanchet, D.,Tassin, J.P.,Bonamy, A. M., and Guerrillot, L. (1983) Enzymology of Alkane Degradation in Pseudomonas aeruginosa. Acta Biotechnol., 3, 339-344. [CrossRef] [Google Scholar]
  • Macham, L.P., and Heydeman, M.T. (1974) Pseudomonas aeruginosa Mutants Defective in Heptane Oxidation. J. Gen. Microbiol., 85, 77-84. [CrossRef] [PubMed] [Google Scholar]
  • van Beilen, J.B., Veenhoff, L., and Witholt, B. (1998) Alkane Hydroxylase Systems in Pseudomonas aeruginosa Strains Able to Grow on n-Octane. In: New Frontiers in Screening for Microbial Biocatalysts Kieslich, K., van der Beek, C.P., de Bont, J.A.M., and van den Tweel, W.J.J. (Ed.), Elsevier Science B.V., Amsterdam. [Google Scholar]
  • Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.E., III,Tekaia, F.,Badcock, K.,Basham, D.,Brown, D.,Chillingworth, T.,Connor, R.,Davies, R.,Devlin, K.,Feltwell, T.,Gentles, S.,Hamlin, N.,Holroyd, S.,Hornsby, T.,Jagels, K.,Krogh, A.,McLeah, J.,Moule, S.,Murphy, L.,Oliver, K.,Osborne, J.,Quail, M.A.,Rajandream, M.A.,Rogers, J.,Rutter, S.,Soeger, K.,Skelton, J.,Squares, R.,Squares, S.,Sulston, J.E.,Taylor, K.,Whitehead, S., and Barrett, B.G. (1998) Deciphering the Biology of Mycobacterium tuberculosis from the Complete Genome Sequence. Nature, 393, 537-544. [CrossRef] [PubMed] [Google Scholar]
  • Andreoni, V.,Bernasconi, S.,Colombo, M., van Beilen, J.B., and Cavalca, L. (2000) Detection of Genes for Alkane and Naphthalene Catabolism in Rhodococcus sp. Strain 1BN. Environ. Microbiol., 2, 572-577. [CrossRef] [PubMed] [Google Scholar]
  • Juni, E., and Janik, A. (1969) Transformation of Acinetobacter calcoaceticus (Bacterium Anitratum). J. Bacteriol., 98, 281-288. [Google Scholar]
  • Asperger, O., and Kleber, H.P. (1991) Metabolism of Alkanes by Acinetobacter. In: The biology of Acinetobacter Towner, K. J. (Ed.), Plenum Press, New York. [Google Scholar]
  • Fewson, C.A. (1967) The Growth and Metabolic Versatility of the Gram-Negative Bacterium NCIB 8250 (‘Vibrio 01’). J. Gen. Microbiol., 46, 255-266. [CrossRef] [PubMed] [Google Scholar]
  • Yakimov, M.M., Golyshin, P.N., Lang, S., Moore, E.R.B., Abraham, W.R., L�f, H., and Timmis, K.N. (1998) Alcanivorax borkumensis Gen. Nov., sp. Nov., a New, Hydrocarbon-Degrading and Surfactant-Producing Marine Bacterium. Int. J. Syst. Bacteriol., 48, 339-348. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Palleroni, N.J.,Kunisawa, R.,Contopoulou, R., and Douderoff, M. (1973) Nucleic acid Homologies in the Genus Pseudomonas. Int. J. Syst. Bacteriol., 23, 333-339. [CrossRef] [Google Scholar]
  • Golyshin, P.N.,Chernikova, T.,Abraham, W.R.,Luensdorf, H.,Timmis, K.N., and Yakimov, M.M. (2002) Oleiphilaceae Fam. Nov., to Include Oleiphilus messinensis Gen. Nov., sp. Nov., a Novel Marine Bacterium that Obligately Utilizes Hydrocarbons. Int. J. Syst. Evol. Microbiol., 52, 901-911. [PubMed] [Google Scholar]
  • Vomberg, A., and Klinner, U. (2000) Distribution of alkB Genes Within n-Alkane-Degrading Bacteria. J. Appl. Microbiol. 89, 339-348. [CrossRef] [PubMed] [Google Scholar]
  • Panicker, G., and Bej, A.K. (2001) Detection of Biodegradative Genes Using Polymerase Chain Reaction in Antarctic Isolates. Genbank Entry AAK56792. [Google Scholar]
  • Schwartz, R.D., and McCoy, C.J. (1973) Pseudomonas oleovorans Hydroxylation-Epoxidation System: Additional Strain Improvements. Appl. Microbiol., 26, 217-218. [PubMed] [Google Scholar]
  • Stutz, E.W.,Défago, G., and Kern, H. (1986) Naturally Occuring Fluorescent Pseudomonads Involved in Suppression of Black Root Rot of Tobacco. Phytopathology, 76, 181-185. [CrossRef] [Google Scholar]
  • Holloway, B.W. (1969) Genetics of Pseudomonas. Bacteriol. Rev., 33, 419-443. [Google Scholar]
  • Guerra-Santos, L.H.,Käppeli, O., and Fiechter, A. (1986) Dependence of Pseudomonas Aeruginosa Continuous Culture Biosurfactant Production on Nutritional and Environmental Factors. Appl. Microbiol. Biotechnol., 24, 443-448. [CrossRef] [Google Scholar]
  • Thysse, G.J.E., and van der Linden, A.C. (1958) n-Alkane Oxidation by a Pseudomonas. Studies on the Intermediate Metabolism. Anton. Leeuwenhoek, 24, 298-308. [CrossRef] [Google Scholar]
  • Fuhs, G.W. (1961) Der mikrobielle Abbau von Kohlenwasserstoffen. Arch. Mikrobiol., 39, 374-422. [CrossRef] [PubMed] [Google Scholar]
  • Lukins, H.B., and Foster, J.W. (1963) Utilization of Hydrocarbons and Hydrogen by Mycobacteria. Z. Allg. Mikrobiol., 3, 251-264. [CrossRef] [PubMed] [Google Scholar]
  • Hou, C.T.,Jackson, M.A.,Bagby, M.O., and Becker, L.A. (1994) Microbial Oxidation of Cumene by Octane-Grown Cells. Appl. Microbiol. Biotechnol., 41, 178-182. [CrossRef] [Google Scholar]
  • van Beilen, J.B., Smits, T.H.M., Whyte, L.G., Schorcht, S., R�isberger, M.,Plaggemeier, T.,Engesser, K.H., and Witholt, B. (2002) Alkane Hydroxylases in Gram-Positive Strains. Environ. Microbiol., 4, 676-682 [CrossRef] [PubMed] [Google Scholar]
  • Schorcht, S. (1998) Mikrobiologische und Molekularbiologische Charakterisierung Alkanabbauender Bakteriengemeinschaften. PhD Thesis, Universit㲠Bremen. [Google Scholar]
  • Plaggemeier, T. (2000) Elimination der Schwer Wasserlöslichen Modellabluftinhaltsstoffe n-Hexan und Toluol in Biorieselbettverfahren. PhD Thesis, Universität Stuttgart. [Google Scholar]
  • Whyte, L.G.,Smits, T.H.M.,Labbé, D.,Witholt, B.,Greer, C.W., and van Beilen, J.B. (2002) Cloning and Characterization of Multiple Alkane Hydroxylase Systems in Rhodococcus spp. Strains Q15 and 16531. Appl. Environ. Microbiol., 68, 5933-5942. [CrossRef] [PubMed] [Google Scholar]
  • Higgins, D.G., and Sharp, P.M. (1988) CLUSTAL: a Package for Performing Multiple Sequence Alignment on a Microcomputer. Gene, 73, 237-244. [CrossRef] [Google Scholar]
  • Smits, T.H.M.,Seeger, M.A.,Witholt, B., and van Beilen, J.B. (2001) New Alkane-Responsive Expression Vectors for E. coli and Pseudomonas. Plasmid, 46, 16-24. [CrossRef] [Google Scholar]
  • Chakrabarty, A.M.,Chou, G., and Gunsalus, I.C. (1973) Genetic Regulation of Octane Dissimulation Plasmid in Pseudomonas. Proc. Natl. Acad. Sci. USA, 70, 1137-1140. [CrossRef] [Google Scholar]
  • Asperger, O.,Wirkner, K.,Schmidt, M., and Flechsig, E. (1994) Detection of Diverse Cytochrome P450-Dependent Biooxygenation Catalysts in Microorganisms Using a Multipurpose Inducer. Biocatalysis, 10, 233-246. [CrossRef] [Google Scholar]
  • Morris, S.A.,Radajewski, S.,Willison, T.W., and Murrell, J.C. (2002) Identification of the Functionally Active Methanotroph Population in a Peat Soil Microcosm by Stable-Isotope Probing. Appl. Environ. Microbiol., 68, 1446-1453. [CrossRef] [PubMed] [Google Scholar]
  • Horz, H.P.,Yimga, M.T., and Liesack, W. (2001) Detection of Methanotroph Diversity on Roots of Submerged Rice Plants by Molecular Retrieval of pmoA, mmoX, mxaF, and 16S rRNA and Ribosomal DNA, Including pmoA-Based Terminal Restriction Fragment Length Polymorphism Profiling. Appl. Environ. Microbiol., 67, 4177-4185. [CrossRef] [PubMed] [Google Scholar]
  • Baker, P.W.,Futamata, H.,Harayama, S., and Watanabe, K. (2001) Molecular Diversity of pMMO and sMMO in a TCEContaminated Aquifer During Bioremediation. FEMS Microbiol. Ecol., 38, 161-167. [CrossRef] [Google Scholar]
  • Sotsky, J.B.,Greer, C.W., and Atlas, R.M. (1994) Frequency of Genes in Aromatic and Aliphatic Hydrocarbon Biodegradation Pathways Within Bacterial Populations from Alaskan Sediments. Can. J. Microbiol., 40, 981-985. [CrossRef] [PubMed] [Google Scholar]
  • Knaebel, D.B., and Crawford, R.L. (1995) Extraction and Purification of Microbial DNA from Petroleum- Contaminated Soils and Detection of Low Numbers of Toluene, Octane and Pesticide Degraders by Multiplex Polymerase Chain Reaction and Southern Analysis. Mol. Ecol., 4, 579-591. [CrossRef] [PubMed] [Google Scholar]
  • Whyte, L.G.,Greer, C.W., and Inniss, W.E. (1996) Assessment of the Biodegradation Potential of Psychrotrophic Microorganisms. Can. J. Microbiol., 42, 99-106. [CrossRef] [PubMed] [Google Scholar]
  • Guo, C.,Sun, W.,Harsh, J.B., and Ogram, A. (1997) Hybridisation Analysis of Microbial DNA from Fuel Oil- Contaminated and Noncontaminated Soil. Microb. Ecol., 34, 178-187. [CrossRef] [PubMed] [Google Scholar]
  • Stapleton, R.D., and Sayler, G.S. (1998) Assessment of the Microbiological Potential for the Natural Attenuation of Petroleum Hydrocarbons in a Shallow Aquifer System. Microb. Ecol., 36, 349-361. [CrossRef] [PubMed] [Google Scholar]
  • Stapleton, R.D.,Sayler, G.S.,Boggs, J. M.,Libelo, E.L.,Stauffer, T., and MacIntyre, W.G. (2000) Changes in Subsurface Catabolic Gene Frequencies During Natural Attenuation of Petroleum Hydrocarbons. Environ. Sci. Technol., 34, 1991-1999. [CrossRef] [Google Scholar]
  • Siciliano, S.D.,Fortin, N.,Mihoc, A.,Wisse, G.,Labelle, S.,Beaumier, D.,Ouellette, D.,Roy, R.,Whyte, L.G.,Banks, M.K.,Schwab, P.,Lee, K., and Greer, C.W. (2001) Selection of Specific Endophytic Bacterial Genotypes by Plants in Response to Soil Contamination. Appl. Environ. Microbiol., 67, 2469-2475. [CrossRef] [PubMed] [Google Scholar]
  • Whyte, L.G.,Schultz, A., van Beilen, J.B.,Luz, A.P.,Pellizari, D.,Labbé, D., and Greer, C.W. (2002) Prevalence of Alkane Monooxygenase Genes in Arctic Hydrocarbon- Contaminated and Pristine Soils. FEMS Microbiol. Ecol., 41, 141-150. [PubMed] [Google Scholar]
  • Whyte, L.G.,Schultz, A., van Beilen, J.B.,Luz, A.P.,Pellizari, D.,Labbé, D., and Greer, C.W. (2002) Prevalence of Alkane Monooxygenase Genes in Arctic and Antarctic Hydrocarbon-Contaminated and Pristine Soils. FEMS Microbiol. Ecol., 41, 141-150. [PubMed] [Google Scholar]
  • Abbott, B.J., and Hou, C.T. (1973) Oxidation of 1-Alkenes to 1,2-Epoxyalkanes by Pseudomonas oleovorans. Appl Microbiol, 26, 86-91. [Google Scholar]
  • Van Ravenswaay Claasen, J.C., and Van der Linden, A C. (1971) Substrate Specificity of the Paraffin Hydroxylase of Pseudomonas aeruginosa. Ant. Leeuwenhoek, 37, 339-352. [Google Scholar]
  • Kiener, A. (1992) Enzymatic Oxidation of Methyl Groups on Aromatic Heterocycles: a Versatile Method for the Preparation of Heteroaromatic Carboxylic Acids. Angew. Chem. Int. Ed. Engl., 31, 774-775. [CrossRef] [Google Scholar]
  • Johnstone, S.L., Phillips, G.T., Robertson, B.W., Watts, P.D., Bertola, M.A., Koger, H.S., and Marx, A.F. (1986) Stereoselective Synthesis of S-(-)-ß-blockers via Microbially Produced Epoxide Intermediates. In: Biocatalysis in Organic Media Laane, C., Tramper, J., and Lilly, M.D. (Ed.), Elsevier, Amsterdam. [Google Scholar]
  • Li, Z.,Feiten, H.J., van Beilen, J.B.,Duetz, W., and Witholt, B. (1999) Preparation of Optically Active N-benzyl-3- Hydroxypyrrolidine by Enzymatic Hydroxylation. Tetrahedron: Asymmetry, 10, 1323-1333. [CrossRef] [Google Scholar]
  • Fu, H.,Newcomb, M., and Wong, C.H. (1991) Pseudomonas oleovorans Monooxygenase Catalyzed Asymmetric Epoxidation of Allyl Alcohol Derivatives and Hydroxylation of a Hypersensitive Radical Probe with the Radical Ring Opening State Exceeding the Oxygen Rebound State. J. Am. Chem. Soc., 113, 5878-5880. [CrossRef] [Google Scholar]
  • Chang, D.,Witholt, B., and Li, Z. (2000) Preparation of (S)- N-Substituted 4-Hydroxy-Pyrrolidine-2-Ones by Regio- and Stereoselective Hydroxylation with Sphingomonas sp. HXN- 200. Org. Lett., 2, 3949-3952. [CrossRef] [PubMed] [Google Scholar]
  • Chang, D.,Feiten, H.J.,Engesser, K.H., van Beilen, J.B.,Witholt, B., and Li, Z. (2002) Practical Syntheses of NSubstituted 3-Hydroxyazetidines and 4-Hydroxypiperidines by Hydroxylation with Sphingomonas sp. HXN-200. Org. Lett., 4, 1859-1862. [CrossRef] [PubMed] [Google Scholar]
  • Clifford, K.H., Phillips, G.T., and Marx, A.F. (1988) Process for the Preparation of Substituted Phenoxy Propanoic Acids. US Patent 5 037 ,759. [Google Scholar]
  • Matsui, T., and Furuhashi, K. (1995) Asymmetric Oxidation of Isopropylmoieties of Aliphatic and Aromatic Hydrocarbons by Rhodococcus sp. 11B. Biosci. Biotech. Biochem., 59, 1342-1344. [CrossRef] [Google Scholar]
  • Wilcox, D.W.,Autenrieth, R.L., and Bonner, J.S. (1995) Propane-Induced Biodegradation of Vapor Phase Trichloroethylene. Biotechnol. Bioeng., 46, 333-342. [CrossRef] [PubMed] [Google Scholar]
  • Dupasquier, D.,Revah, S., and Auria, R. (2002) Biofiltration of Methyl Yert-Butyl Ether Vapors by Cometabolism with Pentane: Modeling and Experimental Approach. Environ. Science Technol., 36, 247-253. [CrossRef] [Google Scholar]
  • Liu, C.Y.,Speitel, G.E.J., and Georgiou, G. (2001) Kinetics of Methyl Tertiary-Butyl Ether Cometabolism at Low Concentrations by Pure Cultures of Butane-Degrading Bacteria. Appl. Environ. Microbiol., 67, 2197-2201. [CrossRef] [PubMed] [Google Scholar]
  • Garnier, P.M.,Auria, R.,Augur, C., and Revah, S. (2000) Cometabolic Biodegradation of Methyl Tertiary-Butyl Ether by a Soil Consortium: Effect of Components Present in Gasoline. J. Gen. Appl. Microbiol., 46, 79-84. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Garnier, P.M.,Auria, R.,Augur, C., and Revah, S. (1999) Cometabolic Biodegradation of Methyl Tertiary-Butyl Ether by Pseudomonas aeruginosa Grown on Pentane. Appl. Microbiol. Biotechnol., 51, 498-503. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.