Dossier: IFP International Workshop "Microbiology of Hydrocarbons: State of the Art and Perspectives"
Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 58, Number 4, July-August 2003
Dossier: IFP International Workshop "Microbiology of Hydrocarbons: State of the Art and Perspectives"
Page(s) 441 - 448
Published online 01 December 2006
  • Alvarez, P.J.J. and Vogel, T.M. (1991) Substrate interaction of benzene, toluene and para-xylene during microbial degradation by pure cultures and mixed aquifer slurries. Appl. Environ. Microbiol., 57, 2981-2985. [PubMed] [Google Scholar]
  • Chapelle, F.H. (1999) Bioremediation of petroleum hydrocarboncontaminated ground water: the perspectives of history and hydrology. Ground water, 37, 122-132. [CrossRef] [MathSciNet] [Google Scholar]
  • Council on Environmental Quality (1981) Contamination of ground water by toxic organic chemicals. Washington, D.C. Government Printing Office. [Google Scholar]
  • Di Lecce, C.,Accarino, M.,Bolognese, F.,Galli, E. and Barbieri, P. (1997) Isolation and metabolic characterization of a Pseudomonas stutzeri mutant able to grow on the three isomers of xylene. Microbiol., 63, 3279-3281. [Google Scholar]
  • Durand, J.P. (1998) Le rôle de la CPG dans l’industrie pétrolière et la pétrochimie. De l’analyse détaillée des hydrocarbures à la distillation simulée. Analusis, 26, M17-M21. [CrossRef] [EDP Sciences] [Google Scholar]
  • Durand, J.P.,Béboulène, J.J. and Ducrozet, A. (1995) Detailed characterization of petroleum products with capillary analyzers. Analusis, 23, 481-483. [Google Scholar]
  • Fall, R.R., Brown, J.L. and Schaeffer, T.L. (1979) Enzyme recruitement allows the biodegradation of recalcitrant branched hydrocarbons by Pseudomonas citronellonis. Appl. Microbiol. Biotechnol. 38, 715-722. [Google Scholar]
  • Freijer, J.I., de Jonge, H.,Bouten, W. and Verstraten, J.M. (1996) Assessing mineralization rates of petroleum hydrocarbons in soils in relation to environmental factors and experimental scale. Biodegradation, 7, 487-500. [CrossRef] [Google Scholar]
  • Gallego, J.L.R., Loredo, J., Llamas, J.F., Vazquez, F. and Sanchez, J. (2001) Bioremediation of diesel contaminated soils; evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation, 12, 325-335. [Google Scholar]
  • Guibet, J.C. (1997) Carburants et moteurs, Éditions Technip, Paris, 21-70. [Google Scholar]
  • Lang, E. (1996) Diversity of bacterial capabilities in utilizing alkylated benzenes and other aromatics compounds. Lett. Appl. Microbiol., 23, 257-260. [CrossRef] [PubMed] [Google Scholar]
  • Leahy, J.G. and Olsen, R.H. (1997) Kinetics of toluene degradation by toluene-oxidizing bacteria as a function of oxygen concentration, and the effect of nitrate. FEMS Microbiol Ecol., 23, 23-30. [Google Scholar]
  • Mallakin, A. and Ward, O.P. (1996) Degradation of BTEX compounds in liquid media and in peat biofilters. J. Ind. Microbiol., 16, 309-318. [CrossRef] [Google Scholar]
  • Marquez-Rocha, F.J.,Hernandez-Rodriguez, V. and Lamela, M.T. (2001) Biodegradation of diesel oil in soil by a microbial consortium. Water Air and Soil pollution, 128, 313-320. [CrossRef] [Google Scholar]
  • Matteau, Y. and Ramsay, B. (1997) Active biofiltration of toluene. Biodegradation, 8, 135-141. [CrossRef] [PubMed] [Google Scholar]
  • OECD (1993) Guidelines for the testing of chemicals. In: Les éditions de l'OCDE, Paris. 2, 1-13. [Google Scholar]
  • Olson, J.J.,Mills, G.L.,Herbert, B.E. and Morris, P.J. (1999) Biodegradation rates of separated diesel components. Environ. Toxicol. Chem., 18, 2448-2453. [CrossRef] [Google Scholar]
  • Paje, M.L.F.,Neilan, B.A. and Couperwhite, I. (1997) A Rhodococcus species that thrives on medium saturated with liquid benzene. Microbiology, 143, 2975-2981. [CrossRef] [PubMed] [Google Scholar]
  • Rozkov, A.,Käärd, A. and Vilu, R. (1998) Biodegradation of dissolved jet fuel in chemostat by a mixed bacterial culture isolated from heavy polluted site. Biodegradation, 8, 363-369. [CrossRef] [Google Scholar]
  • Schaeffer, T.L., Cantwell, S.G., Brown, J.L., Watt, D.S. and Fall, R.R. (1979) Microbial growth on hydrocarbons; terminal branching inhibits biodegradation. Biodegradation, 9, 319-326. [Google Scholar]
  • Seklemova, E.,Pavlova, A. and Kovacheva, K. (2001) Biostimulation-based bioremediation of diesel fuel: field demonstration. Biodegradation, 12, 311-316. [CrossRef] [PubMed] [Google Scholar]
  • Solano-Serena, F., Marchal, R., Lebeault, J.M. and Vandecasteele, J.P. (1999a) Assessment of intrinsic capacities of microflorae for gasoline degradation. In: In situ and on site bioremediation, Symp. 5th, Battelle Press, Columbus, Ohio, 177-182. [Google Scholar]
  • Solano-Serena, F.,Marchal, R.,Ropars, M.,Lebeault, J.M. and Vandecasteele, J.P. (1999b) Biodegradation of gasoline: kinetics, mass balance, fate of individual hydrocarbons. J. Appl. Microbiol., 86, 1008-1016. [CrossRef] [PubMed] [Google Scholar]
  • Solano-Serena, F.,Marchal, R.,Casaregola, S.,Vasnier, C.,Lebeault, J.M. and Vandecasteele, J.P. (2000a) A new Mycobacterium strain with extended degradation capacities for gasoline hydrocarbons. Appl. Environ. Biotechnol., 66, 2392-2399. [Google Scholar]
  • Solano-Serena, F.,Marchal, R.,Huet, T., and Vandecasteele, J.P. (2000b) Biodegradability of volatile hydrocarbons of gasoline. Appl. Microbiol. Biotechnol., 54, 126-132. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.