Dossier: IFP International Workshop "Microbiology of Hydrocarbons: State of the Art and Perspectives"
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 58, Numéro 4, July-August 2003
Dossier: IFP International Workshop "Microbiology of Hydrocarbons: State of the Art and Perspectives"
Page(s) 427 - 440
DOI https://doi.org/10.2516/ogst:2003026
Publié en ligne 1 décembre 2006
  • Rosenberg, E., and Ron, E.Z. (1996) Bioremediation of Petroleum Contamination, in Bioremediation: Principles and Applications, Crawford, R.L., and Crawford, D.L. (Eds.) Cambridge University Press, Cambridge. [Google Scholar]
  • National Research Council (2002) Oil in the Sea III: Inputs, Fates, and Effects, National Academy Press, Washington DC. [Google Scholar]
  • Söhngen, N.L. (1906) Ueber Bakterien, welche Methan als Kohlenstoffnahrung und Energiequelle gebrauchen. Centralbl. Bakt. etc. Abt. II, 15, 513-517. [Google Scholar]
  • Söhngen, N.L. (1913) Benzin, Petroleum, Paraffinöl und Paraffin als Kohlenstoff- und Energiequelle für Mikroben. Zentr. Bacteriol. Parasitenk., Abt. II, 37, 595-609. [Google Scholar]
  • Brisbane, P.G., and Ladd, J.N. (1965) The Role of Microorganisms in Petroleum Exploration. Annu. Rev. Microbiol., 19. [Google Scholar]
  • Boulton, C.A., and Ratledge, C. (1984) The Physiology of Hydrocarbon-Utilizing Microorganisms. Top. Enzyme Ferment. Biotechnol., 9, 11-77. [Google Scholar]
  • B� M., and Schindler, J. (1984) Aliphatic Hydrocarbons. In: Biotransformations, Kieslich, K. (Ed.), Verlag Chemie Weinheim, Weinheim. [Google Scholar]
  • Steffan, R.J.,McClay, K.,Vainberg, S.,Condee, C.W., and Zhang, D. (1997) Biodegradation of the Gasoline Oxygenates Methyl Tert-Butyl Ether, Ethyl Tert-Butyl Ether, and Tert- Amyl Methyl Ether by Propane-Oxidizing Bacteria. Appl. Environ. Microbiol., 63, 4216-4222. [PubMed] [Google Scholar]
  • Chang, H.S., and AlvarezCohen, L. (1995) Transformation Capacities of Chlorinated Organics by Mixed Cultures Enriched on Methane, Propane, Toluene, or Phenol. Biotechnol. Bioeng., 45, 440-449. [CrossRef] [PubMed] [Google Scholar]
  • Britton, L.N. (1984) Microbial Degradation of Aliphatic Hydrocarbons. In: Microbial Degradation of Organic Compounds Gibson, D.T. (Ed.) Marcel Dekker, New York. [Google Scholar]
  • Hamamura, N.,Storfa, R.T.,Semprini, L., and Arp, D.J. (1999) Diversity in Butane Monooxygenases Among Butane- Grown Bacteria. Appl. Environ. Microbiol., 65, 4586-4593. [PubMed] [Google Scholar]
  • Murrell, J.C.,Gilbert, B., and McDonald, I.R. (2000) Molecular Biology and Regulation of Methane Monooxygenase. Arch. Microbiol., 173, 325-332. [CrossRef] [PubMed] [Google Scholar]
  • Labinger, J.A., and Bercaw, J.E. (2002) Understanding and Exploiting C-H Bond Activation. Nature, 417, 507-514. [CrossRef] [PubMed] [Google Scholar]
  • Heider, J.,Spormann, A.M.,Beller, H.R., and Widdel, F. (1998) Anaerobic Bacterial Metabolism of Hydrocarbons. FEMS Microbiol. Rev., 22, 5, 459-473. [CrossRef] [Google Scholar]
  • Hayaishi, O.,Katagiri, M., and Rothberg, S. (1955) Mechanism of the Pyrocatechase Reaction. J. Am. Chem. Soc., 77, 5450-5451. [CrossRef] [Google Scholar]
  • Witholt, B., de Smet, M.J.,Kingma, J., van Beilen, J.B.,Kok, M.,Lageveen, R.G., and Eggink, G. (1990) Bioconversions of Aliphatic Compounds by Pseudomonas oleovorans in Multiphase Biorectors: Background and Economic Potential. Trends Biotechnol., 8, 46-52. [CrossRef] [PubMed] [Google Scholar]
  • Li, Z.,Feiten, H.J.,Chang, D.,Duetz, W.A., van Beilen, J.B., and Witholt, B. (2001) Preparation of (R)- and (S)-NProtected- 3-Hydroxypyrrolidines by Hydroxylation with Sphingomonas sp. HXN-200, a Highly Active, Regio-and Stereoselective, and Easy to Handle Biocatalyst. J. Org. Chem., 66, 8424-8430. [CrossRef] [PubMed] [Google Scholar]
  • Watkinson, R.J., and Morgan, P. (1990) Physiology of Aliphatic Hydrocarbon-Degrading Micro-Organisms. Biodegradation, 1, 79-92. [CrossRef] [PubMed] [Google Scholar]
  • Ashraf, W.,Mihdhir, A., and Murrell, J.C. (1994) Bacterial Oxidation of Propane. FEMS Microbiol. Lett., 122, 1-6. [CrossRef] [PubMed] [Google Scholar]
  • Sullivan, J.P.,Dickinson, D., and Chase, H.A. (1998) Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and their Application to Bioremediation. Crit. Rev. Microbiol., 24, 335-373. [CrossRef] [PubMed] [Google Scholar]
  • Whyte, L.G.,Hawari, J.,Zhou, E.,Bourbonnière, L.,Inniss, W.E., and Greer, C.W. (1998) Biodegradation of Variable- Chain-Length Alkanes at Low Temperatures by a Psychrotrophic Rhodococcus sp. Appl. Environ. Microbiol., 64, 2578-2584. [Google Scholar]
  • Forney, F.W., and Markovetz, A.J. (1970) Subterminal Oxidation of Aliphatic Hydrocarbons. J. Bacteriol., 102, 281-282. [PubMed] [Google Scholar]
  • Forney, F.W., and Markovetz, A.J. (1968) Oxidative Degradation of Methyl Ketones II. Chemical Pathway for Degradation of 2-Tridecanone by Pseudomonas multivorans and Pseudomonas aeruginosa. J. Bacteriol., 96, 1055-1064. [Google Scholar]
  • Forney, F.W.,Markovetz, A.J., and Kallio, R.E. (1967) Bacterial Oxidation of 2-Tridecanone to 1-Undecanol. J. Bacteriol., 93, 649-655. [PubMed] [Google Scholar]
  • Britton, L.N., and Markovetz, A.J. (1977) A Novel Ketone Monooxygenase from Pseudomonas cepacia. Purification and Properties. J. Biol. Chem., 252, 8561-8566. [PubMed] [Google Scholar]
  • Shum, A.C., and Markovetz, A.J. (1974) Purification and Properties of Undecyl Acetate Esterase from Pseudomonas cepacia Grown on 2-Tridecanone. J. Bacteriol., 118, 880-889. [PubMed] [Google Scholar]
  • Scheller, U.,Zimmer, T.,Becher, D.,Schauer, F., and Schunck, W.H. (1998) Oxygenation Cascade in Conversion of n-Alkanes to α,ω-Dioic Acids Catalyzed by Cytochrome P450 52A3. J. Biol. Chem., 273, 32528-32534. [CrossRef] [PubMed] [Google Scholar]
  • Broadway, N.M.,Dickinson, F.M., and Ratledge, C. (1993) The Enzymology of Dicarboxylic Acid Formation by Corynebacterium sp. Strain 7E1C Grown on n-Alkanes. J. Gen. Microbiol., 139, 1337-1344. [CrossRef] [Google Scholar]
  • Iida, T.,Sumita, T.,Ohta, A., and Takagi, M. (2000) The Cytochrome P450ALK Multigene Family of an n-Alkane- Assimilating Yeast, Yarrowia lipolytica: Cloning and Characterization of Genes Coding for New CYP52 Family Members. Yeast, 16, 1077-1087. [CrossRef] [PubMed] [Google Scholar]
  • Maier, T.,Foerster, H.H.,Asperger, O., and Hahn, U. (2001) Molecular Characterization of the 56-kDa CYP153 from Acinetobacter sp. EB104. Biochem. Biophys. Res. Commun., 286, 652-658. [CrossRef] [PubMed] [Google Scholar]
  • Cardini, G., and Jurtshuk, P. (1968) Cytochrome P-450 Involvement in the Oxidation of n-Octane by Cell-Free Extracts of Corynebacterium sp. Strain 7E1C. J. Biol. Chem., 243, 6070-6072. [PubMed] [Google Scholar]
  • Hamamura, N.,Yeager, C. M., and Arp, D. J. (2001) Two Distinct Monooxygenases for Alkane Oxidation in Nocardioides sp. Strain CF8. Appl. Environ. Microbiol., 67, 4992-4998. [CrossRef] [PubMed] [Google Scholar]
  • Sluis, M.K., Sayavedra Soto, L.A., and Arp, D.J. (2002) Molecular Analysis of the Soluble Butane Monooxygenase from "Pseudomonas butanovora". Microbiology, 148, 3617-3629. [Google Scholar]
  • Smits, T.H.M.,Balada, S.B.,Witholt, B., and van Beilen, J.B. (2002) Functional Analysis of Alkane Hydroxylases from Gram-Negative and Gram-Positive Bacteria. J. Bacteriol., 184, 1733-1742. [CrossRef] [PubMed] [Google Scholar]
  • Maeng, J.H.,Sakai, Y.,Tani, Y., and Kato, N. (1996) Isolation and Characterization of a Novel Oxygenase that Catalyzes the First Step of n-Alkane Oxidation in Acinetobacter sp Strain M-1. J. Bacteriol., 178, 3695-3700. [CrossRef] [PubMed] [Google Scholar]
  • Pandey, K.K.,Mayilray, S., and Chakrabarti, T. (2002) Pseudomonas indica sp. Nov., a Novel Butane Utilizing Species. Int. J. Syst. Evol. Microbiol., 52, 1559-1567. [PubMed] [Google Scholar]
  • Padda, R S., Pandey, K.K., Kaul, S., Nair, V D.,Jain, R.K.,Basu, S.K., and Chakrabarti, T. (2001) A Novel Gene Encoding a 54 kDa Polypeptide is Essential for Butane Utilization by Pseudomonas sp. IMT37. Microbiology, 147, 2479-2491. [CrossRef] [PubMed] [Google Scholar]
  • Babu, J.P., and Brown, L.R. (1984) New Type of Oxygenase Involved in the Metabolism of Propane and Isobutane. Appl. Environ. Microbiol., 48, 260-264. [PubMed] [Google Scholar]
  • Baptist, J.N.,Gholson, R.K., and Coon, M.J. (1963) Hydrocarbon Oxidation by a Bacterial Enzyme System: I Products of Octane Oxidation. Biochim. Biophys. Acta, 69, 40-47. [CrossRef] [PubMed] [Google Scholar]
  • van Beilen, J.B.,Wubbolts, M.G., and Witholt, B. (1994) Genetics of Alkane Oxidation by Pseudomonas oleovorans. Biodegradation, 5, 161-174. [CrossRef] [PubMed] [Google Scholar]
  • van Beilen, J.B., Panke, S., Lucchini, S., Franchini, A.G., R�isberger, M., and Witholt, B. (2001) Analysis of Pseudomonas putida Alkane Degradation Gene Clusters and Flanking Insertion Sequences: Evolution and Regulation of the Alk-Genes. Microbiology, 147, 1621-1630. [Google Scholar]
  • McKenna, E.J., and Coon, M.J. (1970) Enzymatic ?-Oxidation. IV. Purification and Properties of the ?-Hydroxylase of Pseudomonas Oleovorans. J. Biol. Chem., 245, 3882-3889. [Google Scholar]
  • Kok, M.,Oldenhuis, R., van der Linden, M.P.G.,Raatjes, P.,Kingma, J., van Lelyveld, P.H., and Witholt, B. (1989) The Pseudomonas oleovorans Alkane Hydroxylase Gene. Sequence and Expression. J. Biol. Chem., 264, 5435-5441. [PubMed] [Google Scholar]
  • van Beilen, J.B.,Penninga, D., and Witholt, B. (1992) Topology of the Membrane-Bound Alkane Hydroxylase of Pseudomonas oleovorans. J. Biol. Chem., 267, 9194-9201. [Google Scholar]
  • Peterson, J.A., and Coon, M J. (1968) Enzymatic ?- oxidation. III. Purification and Properties of Rubredoxin, a Component of the ?-Hydroxylation System of Pseudomonas oleovorans. J. Biol. Chem., 243, 329-334. [Google Scholar]
  • Kok, M.,Oldenhuis, R., van der Linden, M.P.G.,Meulenberg, C.H.C.,Kingma, J., and Witholt, B. (1989) The Pseudomonas oleovorans AlkBAC Operon Encodes Two Structurally Related Rubredoxins and an Aldehyde Dehydrogenase. J. Biol. Chem., 264, 5442-5451. [PubMed] [Google Scholar]
  • van Beilen, J.B.,Neuenschwander, M.,Smits, T.H.M.,Roth, C.,Balada, S.B., and Witholt, B. (2002) Rubredoxins Involved in Alkane Oxidation. J. Bacteriol., 184, 1722-1732. [CrossRef] [PubMed] [Google Scholar]
  • Ueda, T., and Coon, M.J. (1972) Enzymatic ?-Oxidation. VII. Reduced Diphosphopyridine Nucleotide-Rubredoxin Reductase: Properties and Function as an Electron Carrier in ?-Hydroxylation. J. Biol. Chem., 247, 5010-5016. [PubMed] [Google Scholar]
  • Eggink, G.,Engel, H.,Vriend, G.,Terpstra, P., and Witholt, B. (1990) Rubredoxin Reductase of Pseudomonas oleovorans. Structural Relationship to Other Flavoprotein Oxidoreductases Based on One NAD and Two FAD Fingerprints. J. Mol. Biol., 212, 135-142. [CrossRef] [Google Scholar]
  • Smits, T.H.M.,Röthlisberger, M.,Witholt, B., and van Beilen, J.B. (1999) Molecular Screening for Alkane Hydroxylase Genes in Gram-Negative and Gram-Positive Strains. Environ. Microbiol., 1, 307-318. [CrossRef] [PubMed] [Google Scholar]
  • Shanklin, J.,Whittle, E., and Fox, B.G. (1994) Eight Histidine Residues are Catalytically Essential in a Membrane-Associated Iron Enzyme, Stearoyl-CoA Desaturase, and are Conserved in Alkane Hydroxylase and Xylene Monooxygenase. Biochem., 33, 12787-12794. [CrossRef] [Google Scholar]
  • Ratajczak, A.,Geißdörfer, W., and Hillen, W. (1998) Alkane Hydroxylase from Acinetobacter sp. Strain ADP-1 is Encoded by alkM and Belongs to a New Family of Bacterial Integral-Membrane Hydrocarbon Hydroxylases. Appl. Environ. Microbiol., 64, 1175-1179. [PubMed] [Google Scholar]
  • Marin, M.M.,Smits, T.H.M., van Beilen, J.B., and Rojo, F. (2001) The Alkane Hydroxylase Gene of Burkholderia Cepacia RR10 is Under Catabolite Repression Control. J. Bacteriol., 183, 4202-4209. [CrossRef] [PubMed] [Google Scholar]
  • Tani, A.,Ishige, T.,Sakai, Y., and Kato, N. (2001) Gene Structures and Regulation of the Alkane Hydroxylase Complex in Acinetobacter sp. Strain M-1. J. Bacteriol., 183, 1819-1823. [CrossRef] [PubMed] [Google Scholar]
  • van Beilen, J.B.,Kingma, J., and Witholt, B. (1994) Substrate Specificity of the Alkane Hydroxylase of Pseudomonas oleovorans GPo1. Enzyme Microb. Technol., 16, 904-911. [CrossRef] [Google Scholar]
  • Yadav, J.S., and Loper, J.C. (1999) Multiple P450alk (Cytochrome P450 Alkane Hydroxylase) Genes from the Halotolerant Yeast Debaryomyces Hansenii. Gene, 226, 139-146. [Google Scholar]
  • Ohkuma, M.,Zimmer, T.,Iida, T.,Schunck, W.H.,Ohta, A., and Takagi, M. (1998) Isozyme Function of n-Alkane- Inducible Cytochromes P450 in Candida Maltosa Revealed by Sequential Gene Disruption. J. Biol. Chem., 273, 3948-3953. [CrossRef] [PubMed] [Google Scholar]
  • Schmitz, C.,Goebel, I.,Wagner, S.,Vomberg, A., and Klinner, U. (2000) Competition Between n-Alkane- Assimilating Yeasts and Bacteria During Colonization of Sandy Soil Microcosms. Appl. Microbiol. Biotechnol., 54, 126-132. [CrossRef] [PubMed] [Google Scholar]
  • Cardini, G., and Jurtshuk, P. (1970) The Enzymatic Hydroxylation of n-Octane by Corynebacterium sp. Strain 7E1C. J. Biol. Chem., 245, 2789-2796. [PubMed] [Google Scholar]
  • Müller, R.,Asperger, O., and Kleber, H.P. (1989) Purification of Cytochrome P-450 from n-Hexadecane- Grown Acinetobacter Calcoaceticus. Biomed. Biochem. Acta., 48, 243-254. [Google Scholar]
  • Munro, A.W., and Lindsay, J.G. (1996) Bacterial Cytochromes P-450. Mol. Microbiol., 20, 1115-1125. [CrossRef] [PubMed] [Google Scholar]
  • Jenkins, P.G.,Raboin, D., and Moran, F. (1972) Mutants of Mycobacterium Rhodochrous with Modified Patterns of n-Paraffin Utilization. J. Gen. Microbiol., 72, 395-398. [CrossRef] [Google Scholar]
  • Van der Linden, A.C., and Van RavenswaayClaasen, J.C. (1971) Hydrophobic Enzymes in Hydrocarbon Degradation. Lipids, 6, 437-443. [CrossRef] [PubMed] [Google Scholar]
  • Azoulay, E.,Chouteau, J., and Davidovics, G. (1963) Isolement et Caractérisation des enzymes responsables de l’oxydation des hydrocarbures. Biochim. Biophys. Acta, 77, 554-567. [CrossRef] [Google Scholar]
  • Vandecasteele, J.P.,Blanchet, D.,Tassin, J.P.,Bonamy, A. M., and Guerrillot, L. (1983) Enzymology of Alkane Degradation in Pseudomonas aeruginosa. Acta Biotechnol., 3, 339-344. [CrossRef] [Google Scholar]
  • Macham, L.P., and Heydeman, M.T. (1974) Pseudomonas aeruginosa Mutants Defective in Heptane Oxidation. J. Gen. Microbiol., 85, 77-84. [CrossRef] [PubMed] [Google Scholar]
  • van Beilen, J.B., Veenhoff, L., and Witholt, B. (1998) Alkane Hydroxylase Systems in Pseudomonas aeruginosa Strains Able to Grow on n-Octane. In: New Frontiers in Screening for Microbial Biocatalysts Kieslich, K., van der Beek, C.P., de Bont, J.A.M., and van den Tweel, W.J.J. (Ed.), Elsevier Science B.V., Amsterdam. [Google Scholar]
  • Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.E., III,Tekaia, F.,Badcock, K.,Basham, D.,Brown, D.,Chillingworth, T.,Connor, R.,Davies, R.,Devlin, K.,Feltwell, T.,Gentles, S.,Hamlin, N.,Holroyd, S.,Hornsby, T.,Jagels, K.,Krogh, A.,McLeah, J.,Moule, S.,Murphy, L.,Oliver, K.,Osborne, J.,Quail, M.A.,Rajandream, M.A.,Rogers, J.,Rutter, S.,Soeger, K.,Skelton, J.,Squares, R.,Squares, S.,Sulston, J.E.,Taylor, K.,Whitehead, S., and Barrett, B.G. (1998) Deciphering the Biology of Mycobacterium tuberculosis from the Complete Genome Sequence. Nature, 393, 537-544. [CrossRef] [PubMed] [Google Scholar]
  • Andreoni, V.,Bernasconi, S.,Colombo, M., van Beilen, J.B., and Cavalca, L. (2000) Detection of Genes for Alkane and Naphthalene Catabolism in Rhodococcus sp. Strain 1BN. Environ. Microbiol., 2, 572-577. [CrossRef] [PubMed] [Google Scholar]
  • Juni, E., and Janik, A. (1969) Transformation of Acinetobacter calcoaceticus (Bacterium Anitratum). J. Bacteriol., 98, 281-288. [Google Scholar]
  • Asperger, O., and Kleber, H.P. (1991) Metabolism of Alkanes by Acinetobacter. In: The biology of Acinetobacter Towner, K. J. (Ed.), Plenum Press, New York. [Google Scholar]
  • Fewson, C.A. (1967) The Growth and Metabolic Versatility of the Gram-Negative Bacterium NCIB 8250 (‘Vibrio 01’). J. Gen. Microbiol., 46, 255-266. [CrossRef] [PubMed] [Google Scholar]
  • Yakimov, M.M., Golyshin, P.N., Lang, S., Moore, E.R.B., Abraham, W.R., L�f, H., and Timmis, K.N. (1998) Alcanivorax borkumensis Gen. Nov., sp. Nov., a New, Hydrocarbon-Degrading and Surfactant-Producing Marine Bacterium. Int. J. Syst. Bacteriol., 48, 339-348. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Palleroni, N.J.,Kunisawa, R.,Contopoulou, R., and Douderoff, M. (1973) Nucleic acid Homologies in the Genus Pseudomonas. Int. J. Syst. Bacteriol., 23, 333-339. [CrossRef] [Google Scholar]
  • Golyshin, P.N.,Chernikova, T.,Abraham, W.R.,Luensdorf, H.,Timmis, K.N., and Yakimov, M.M. (2002) Oleiphilaceae Fam. Nov., to Include Oleiphilus messinensis Gen. Nov., sp. Nov., a Novel Marine Bacterium that Obligately Utilizes Hydrocarbons. Int. J. Syst. Evol. Microbiol., 52, 901-911. [PubMed] [Google Scholar]
  • Vomberg, A., and Klinner, U. (2000) Distribution of alkB Genes Within n-Alkane-Degrading Bacteria. J. Appl. Microbiol. 89, 339-348. [CrossRef] [PubMed] [Google Scholar]
  • Panicker, G., and Bej, A.K. (2001) Detection of Biodegradative Genes Using Polymerase Chain Reaction in Antarctic Isolates. Genbank Entry AAK56792. [Google Scholar]
  • Schwartz, R.D., and McCoy, C.J. (1973) Pseudomonas oleovorans Hydroxylation-Epoxidation System: Additional Strain Improvements. Appl. Microbiol., 26, 217-218. [PubMed] [Google Scholar]
  • Stutz, E.W.,Défago, G., and Kern, H. (1986) Naturally Occuring Fluorescent Pseudomonads Involved in Suppression of Black Root Rot of Tobacco. Phytopathology, 76, 181-185. [CrossRef] [Google Scholar]
  • Holloway, B.W. (1969) Genetics of Pseudomonas. Bacteriol. Rev., 33, 419-443. [Google Scholar]
  • Guerra-Santos, L.H.,Käppeli, O., and Fiechter, A. (1986) Dependence of Pseudomonas Aeruginosa Continuous Culture Biosurfactant Production on Nutritional and Environmental Factors. Appl. Microbiol. Biotechnol., 24, 443-448. [CrossRef] [Google Scholar]
  • Thysse, G.J.E., and van der Linden, A.C. (1958) n-Alkane Oxidation by a Pseudomonas. Studies on the Intermediate Metabolism. Anton. Leeuwenhoek, 24, 298-308. [CrossRef] [Google Scholar]
  • Fuhs, G.W. (1961) Der mikrobielle Abbau von Kohlenwasserstoffen. Arch. Mikrobiol., 39, 374-422. [CrossRef] [PubMed] [Google Scholar]
  • Lukins, H.B., and Foster, J.W. (1963) Utilization of Hydrocarbons and Hydrogen by Mycobacteria. Z. Allg. Mikrobiol., 3, 251-264. [CrossRef] [PubMed] [Google Scholar]
  • Hou, C.T.,Jackson, M.A.,Bagby, M.O., and Becker, L.A. (1994) Microbial Oxidation of Cumene by Octane-Grown Cells. Appl. Microbiol. Biotechnol., 41, 178-182. [CrossRef] [Google Scholar]
  • van Beilen, J.B., Smits, T.H.M., Whyte, L.G., Schorcht, S., R�isberger, M.,Plaggemeier, T.,Engesser, K.H., and Witholt, B. (2002) Alkane Hydroxylases in Gram-Positive Strains. Environ. Microbiol., 4, 676-682 [CrossRef] [PubMed] [Google Scholar]
  • Schorcht, S. (1998) Mikrobiologische und Molekularbiologische Charakterisierung Alkanabbauender Bakteriengemeinschaften. PhD Thesis, Universit㲠Bremen. [Google Scholar]
  • Plaggemeier, T. (2000) Elimination der Schwer Wasserlöslichen Modellabluftinhaltsstoffe n-Hexan und Toluol in Biorieselbettverfahren. PhD Thesis, Universität Stuttgart. [Google Scholar]
  • Whyte, L.G.,Smits, T.H.M.,Labbé, D.,Witholt, B.,Greer, C.W., and van Beilen, J.B. (2002) Cloning and Characterization of Multiple Alkane Hydroxylase Systems in Rhodococcus spp. Strains Q15 and 16531. Appl. Environ. Microbiol., 68, 5933-5942. [CrossRef] [PubMed] [Google Scholar]
  • Higgins, D.G., and Sharp, P.M. (1988) CLUSTAL: a Package for Performing Multiple Sequence Alignment on a Microcomputer. Gene, 73, 237-244. [CrossRef] [Google Scholar]
  • Smits, T.H.M.,Seeger, M.A.,Witholt, B., and van Beilen, J.B. (2001) New Alkane-Responsive Expression Vectors for E. coli and Pseudomonas. Plasmid, 46, 16-24. [CrossRef] [Google Scholar]
  • Chakrabarty, A.M.,Chou, G., and Gunsalus, I.C. (1973) Genetic Regulation of Octane Dissimulation Plasmid in Pseudomonas. Proc. Natl. Acad. Sci. USA, 70, 1137-1140. [CrossRef] [Google Scholar]
  • Asperger, O.,Wirkner, K.,Schmidt, M., and Flechsig, E. (1994) Detection of Diverse Cytochrome P450-Dependent Biooxygenation Catalysts in Microorganisms Using a Multipurpose Inducer. Biocatalysis, 10, 233-246. [CrossRef] [Google Scholar]
  • Morris, S.A.,Radajewski, S.,Willison, T.W., and Murrell, J.C. (2002) Identification of the Functionally Active Methanotroph Population in a Peat Soil Microcosm by Stable-Isotope Probing. Appl. Environ. Microbiol., 68, 1446-1453. [CrossRef] [PubMed] [Google Scholar]
  • Horz, H.P.,Yimga, M.T., and Liesack, W. (2001) Detection of Methanotroph Diversity on Roots of Submerged Rice Plants by Molecular Retrieval of pmoA, mmoX, mxaF, and 16S rRNA and Ribosomal DNA, Including pmoA-Based Terminal Restriction Fragment Length Polymorphism Profiling. Appl. Environ. Microbiol., 67, 4177-4185. [CrossRef] [PubMed] [Google Scholar]
  • Baker, P.W.,Futamata, H.,Harayama, S., and Watanabe, K. (2001) Molecular Diversity of pMMO and sMMO in a TCEContaminated Aquifer During Bioremediation. FEMS Microbiol. Ecol., 38, 161-167. [CrossRef] [Google Scholar]
  • Sotsky, J.B.,Greer, C.W., and Atlas, R.M. (1994) Frequency of Genes in Aromatic and Aliphatic Hydrocarbon Biodegradation Pathways Within Bacterial Populations from Alaskan Sediments. Can. J. Microbiol., 40, 981-985. [CrossRef] [PubMed] [Google Scholar]
  • Knaebel, D.B., and Crawford, R.L. (1995) Extraction and Purification of Microbial DNA from Petroleum- Contaminated Soils and Detection of Low Numbers of Toluene, Octane and Pesticide Degraders by Multiplex Polymerase Chain Reaction and Southern Analysis. Mol. Ecol., 4, 579-591. [CrossRef] [PubMed] [Google Scholar]
  • Whyte, L.G.,Greer, C.W., and Inniss, W.E. (1996) Assessment of the Biodegradation Potential of Psychrotrophic Microorganisms. Can. J. Microbiol., 42, 99-106. [CrossRef] [PubMed] [Google Scholar]
  • Guo, C.,Sun, W.,Harsh, J.B., and Ogram, A. (1997) Hybridisation Analysis of Microbial DNA from Fuel Oil- Contaminated and Noncontaminated Soil. Microb. Ecol., 34, 178-187. [CrossRef] [PubMed] [Google Scholar]
  • Stapleton, R.D., and Sayler, G.S. (1998) Assessment of the Microbiological Potential for the Natural Attenuation of Petroleum Hydrocarbons in a Shallow Aquifer System. Microb. Ecol., 36, 349-361. [CrossRef] [PubMed] [Google Scholar]
  • Stapleton, R.D.,Sayler, G.S.,Boggs, J. M.,Libelo, E.L.,Stauffer, T., and MacIntyre, W.G. (2000) Changes in Subsurface Catabolic Gene Frequencies During Natural Attenuation of Petroleum Hydrocarbons. Environ. Sci. Technol., 34, 1991-1999. [CrossRef] [Google Scholar]
  • Siciliano, S.D.,Fortin, N.,Mihoc, A.,Wisse, G.,Labelle, S.,Beaumier, D.,Ouellette, D.,Roy, R.,Whyte, L.G.,Banks, M.K.,Schwab, P.,Lee, K., and Greer, C.W. (2001) Selection of Specific Endophytic Bacterial Genotypes by Plants in Response to Soil Contamination. Appl. Environ. Microbiol., 67, 2469-2475. [CrossRef] [PubMed] [Google Scholar]
  • Whyte, L.G.,Schultz, A., van Beilen, J.B.,Luz, A.P.,Pellizari, D.,Labbé, D., and Greer, C.W. (2002) Prevalence of Alkane Monooxygenase Genes in Arctic Hydrocarbon- Contaminated and Pristine Soils. FEMS Microbiol. Ecol., 41, 141-150. [PubMed] [Google Scholar]
  • Whyte, L.G.,Schultz, A., van Beilen, J.B.,Luz, A.P.,Pellizari, D.,Labbé, D., and Greer, C.W. (2002) Prevalence of Alkane Monooxygenase Genes in Arctic and Antarctic Hydrocarbon-Contaminated and Pristine Soils. FEMS Microbiol. Ecol., 41, 141-150. [PubMed] [Google Scholar]
  • Abbott, B.J., and Hou, C.T. (1973) Oxidation of 1-Alkenes to 1,2-Epoxyalkanes by Pseudomonas oleovorans. Appl Microbiol, 26, 86-91. [Google Scholar]
  • Van Ravenswaay Claasen, J.C., and Van der Linden, A C. (1971) Substrate Specificity of the Paraffin Hydroxylase of Pseudomonas aeruginosa. Ant. Leeuwenhoek, 37, 339-352. [Google Scholar]
  • Kiener, A. (1992) Enzymatic Oxidation of Methyl Groups on Aromatic Heterocycles: a Versatile Method for the Preparation of Heteroaromatic Carboxylic Acids. Angew. Chem. Int. Ed. Engl., 31, 774-775. [CrossRef] [Google Scholar]
  • Johnstone, S.L., Phillips, G.T., Robertson, B.W., Watts, P.D., Bertola, M.A., Koger, H.S., and Marx, A.F. (1986) Stereoselective Synthesis of S-(-)-ß-blockers via Microbially Produced Epoxide Intermediates. In: Biocatalysis in Organic Media Laane, C., Tramper, J., and Lilly, M.D. (Ed.), Elsevier, Amsterdam. [Google Scholar]
  • Li, Z.,Feiten, H.J., van Beilen, J.B.,Duetz, W., and Witholt, B. (1999) Preparation of Optically Active N-benzyl-3- Hydroxypyrrolidine by Enzymatic Hydroxylation. Tetrahedron: Asymmetry, 10, 1323-1333. [CrossRef] [Google Scholar]
  • Fu, H.,Newcomb, M., and Wong, C.H. (1991) Pseudomonas oleovorans Monooxygenase Catalyzed Asymmetric Epoxidation of Allyl Alcohol Derivatives and Hydroxylation of a Hypersensitive Radical Probe with the Radical Ring Opening State Exceeding the Oxygen Rebound State. J. Am. Chem. Soc., 113, 5878-5880. [CrossRef] [Google Scholar]
  • Chang, D.,Witholt, B., and Li, Z. (2000) Preparation of (S)- N-Substituted 4-Hydroxy-Pyrrolidine-2-Ones by Regio- and Stereoselective Hydroxylation with Sphingomonas sp. HXN- 200. Org. Lett., 2, 3949-3952. [CrossRef] [PubMed] [Google Scholar]
  • Chang, D.,Feiten, H.J.,Engesser, K.H., van Beilen, J.B.,Witholt, B., and Li, Z. (2002) Practical Syntheses of NSubstituted 3-Hydroxyazetidines and 4-Hydroxypiperidines by Hydroxylation with Sphingomonas sp. HXN-200. Org. Lett., 4, 1859-1862. [CrossRef] [PubMed] [Google Scholar]
  • Clifford, K.H., Phillips, G.T., and Marx, A.F. (1988) Process for the Preparation of Substituted Phenoxy Propanoic Acids. US Patent 5 037 ,759. [Google Scholar]
  • Matsui, T., and Furuhashi, K. (1995) Asymmetric Oxidation of Isopropylmoieties of Aliphatic and Aromatic Hydrocarbons by Rhodococcus sp. 11B. Biosci. Biotech. Biochem., 59, 1342-1344. [CrossRef] [Google Scholar]
  • Wilcox, D.W.,Autenrieth, R.L., and Bonner, J.S. (1995) Propane-Induced Biodegradation of Vapor Phase Trichloroethylene. Biotechnol. Bioeng., 46, 333-342. [CrossRef] [PubMed] [Google Scholar]
  • Dupasquier, D.,Revah, S., and Auria, R. (2002) Biofiltration of Methyl Yert-Butyl Ether Vapors by Cometabolism with Pentane: Modeling and Experimental Approach. Environ. Science Technol., 36, 247-253. [CrossRef] [Google Scholar]
  • Liu, C.Y.,Speitel, G.E.J., and Georgiou, G. (2001) Kinetics of Methyl Tertiary-Butyl Ether Cometabolism at Low Concentrations by Pure Cultures of Butane-Degrading Bacteria. Appl. Environ. Microbiol., 67, 2197-2201. [CrossRef] [PubMed] [Google Scholar]
  • Garnier, P.M.,Auria, R.,Augur, C., and Revah, S. (2000) Cometabolic Biodegradation of Methyl Tertiary-Butyl Ether by a Soil Consortium: Effect of Components Present in Gasoline. J. Gen. Appl. Microbiol., 46, 79-84. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Garnier, P.M.,Auria, R.,Augur, C., and Revah, S. (1999) Cometabolic Biodegradation of Methyl Tertiary-Butyl Ether by Pseudomonas aeruginosa Grown on Pentane. Appl. Microbiol. Biotechnol., 51, 498-503. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.