Dossier: Insights into Petroleum Geochemistry
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 58, Number 2, March-April 2003
Dossier: Insights into Petroleum Geochemistry
Page(s) 271 - 297
DOI https://doi.org/10.2516/ogst:2003017
Published online 01 December 2006
  • Albright, P.C.,Sengers, J.V.,Nicoll, J.F. and Ley-Koo, M. (1986) A Crossover Description for the Thermodynamic Properties of Fluids in the Critical Region. Int. J. of Thermophysics, 7, 75. [CrossRef] [Google Scholar]
  • Allen, M.P. and Tildesley, D.J. (1987) Computer Simulation of Liquids, Oxford, Oxford Science Publications. [Google Scholar]
  • Arnaud, J.F., Ungerer, P., Béhar, E.,Moracchini G. and Sanchez, J. (1996) Excess Volumes and Saturation Pressures for the System Methane + n-Tetracosane at 374 K. Representation by Improved EOS Mixing Rules. Fluid Phase Equilibria, 124, 177-207. [CrossRef] [Google Scholar]
  • Ashcroft, S.J.,Booker, D.R. and Turner, J.C.R. (1992) Volumetric Behaviour of Mixtures of Crude Oils and Light Hydrocarbons. J. of the Institute of Energy, 65, 131-136. [Google Scholar]
  • Béhar, F., Ungerer, P., Audibert, A. and Villalba, M. (1988) Experimental Study and Kinetic Modelling of Crude Oil Pyrolysis in Relation to Thermal Recovery Processes. 4th UNITAR/UNDP International Conference on Heavy Crude and Tar Sands, Edmonton, Alberta Oil Sands Technology Abd Research Authority. [Google Scholar]
  • B觡r, F.,Ungerer, P.,Kressmann, S. and Rudkiewicz, J.L. (1991) Thermal Evolution of Crude Oils in Sedimentary Basins: Experimental Simulation in a Confined System and Kinetic Modelling. Oil & Gas Science and Technology, 46, 2, 151-181. [Google Scholar]
  • Berg, R.R. (1975) Capillary Pressure in Stratigraphic Traps. American Association of Petroleum, Geologists Bulletin, 59, 939-956. [Google Scholar]
  • Boulougouris, G.C.,Economou, I.G. and Theodorou, D.N. (1999) On the Calculation of the Chemical Potential Using the Particle Deletion Scheme. Molecular Physic, 96, 905-913. [CrossRef] [Google Scholar]
  • Boulougouris, G.N.,Economou, I.G. and Theodorou, D.N. (2001) Calculation of the Chemical Potential of Chain Molecules Using the Staged Particle Deletion Scheme. J. Chem. Phys., 115, 8231. [CrossRef] [Google Scholar]
  • Bourasseau, E., Ungerer, P. and Boutin, A. (2002a) Prediction of Equilibrium Properties of Cyclic Alkanes by Monte Carlo Simulation - New Anisotropic United Atoms Potential - New Transfer Bias Method. J. Phys. Chem., B, 106, 5483. [Google Scholar]
  • Bourasseau, E., Ungerer, P., Boutin, A. and Fuchs A.H., (2002b) Monte Carlo Simulation of Branched Alkanes and Long Chain n-Alkanes with Anisotropic United Atoms Intermolecular Potential. Molecular Simulation, 28, 317-336. [CrossRef] [Google Scholar]
  • Bourasseau, E., Haboudou, M.A., A., Boutin, Fuchs, H. and Ungerer, P. (2003) New Optimization Method for Intermolecular Potentials - Optimization of a New Anisotropic United Atoms Potential for Olefins - Prediction of Equilibrium Properties. J. Chem. Phys., in press. [Google Scholar]
  • Bouvier, V. (1989) Mod諩sation bidimensionnelle des phénomènes de transport dans les bassins sédimentaires par a méthode des éléments finis. Thèse de doctorat en hydrologie et hydrogéologie quantitatives, Paris, École nationale supérieure des Mines. [Google Scholar]
  • Burnham, A.K.,Braun, R.L. and Gregg, H.R. (1987) Comparison of Methods for Measuring Kerogen Pyrolysis Rates and Fitting Kinetic Parameters. Journal of Energy and Fuels, 1, 452-458. [CrossRef] [Google Scholar]
  • Burnham, A.K. and Braun, R.L. (1990) Detailed Model of Petroleum Formation, Destruction, and Expulsion from Lacustrine and Marine Source Rocks. Organic Geochemistry, 16, 27-40. [CrossRef] [Google Scholar]
  • Carpentier, B.,Ungerer, P.,Kowalewski, I.Magnier, C.,Courcy, J.P. and Huc, A.Y. (1996) Molecular and Isotopic Fractionation of Light Hydrocarbons Between Oil and Gas Phases. Organic Geochemistry, 24, 12, 1115-1139. [CrossRef] [Google Scholar]
  • Chapman, W.G.,Gubbins, K.E.,Jackson, G. and Radosz, M. (1989) SAFT: Equation of State Solution Model for Associating Fluids. Fluid Phase Equilibria, 52, 31-38. [CrossRef] [Google Scholar]
  • Chen, B., Martin, M.G. and Siepmann, J.I. (1998) Thermodynamic Properties of the Williams, OPLS-AA, and MMFF94 All-Atom Force Fields for Normal Alkanes. J. Phys. Chem., B, 102, 2578-2586. [Google Scholar]
  • Chen, B. and Siepmann, I.J. (1999) Transferable Potentials for Phase Equilibria: 3. Explicit - Hydrogen Description of Normal Alkanes. Journal of Physical Chemistry, 103, 5370-5379. [CrossRef] [Google Scholar]
  • Chen, B.,Siepmann, J.I. and Klein, M.L. (2002) Vapor-Liquid Interfacial Properties of Mutually Saturated Water/1-Butanol Solutions. J. Am. Chem. Soc., 124, 12232. [CrossRef] [PubMed] [Google Scholar]
  • Chien, C.H.,Greencorn, R.A. and Chao, K.C. (1983) Chain-of- Rotators Equation of State. American Institute of Chemical Engineering Journal, 24, 849-860. [Google Scholar]
  • Consta, S., Wilding, N.B.,Frenkel D. and Alexandraowicz, Z. (1999) Recoil Growth: an Efficient Simulation Method for Multi- Polymer Systems. J. Chem. Phys., 110, 3220. [CrossRef] [Google Scholar]
  • Cornell, W.D. and Cieplak, P. et al. (1995) A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids and Organic Molecules. J. Am. Chem. Soc., 117, 5179. [CrossRef] [Google Scholar]
  • Cracknell, R.F.,Nicholson, D. and Parsonage, N.G. (1990) Rotational Insertion Bias: a Novel Method for Simulating Dense Phases of Structured Particles, with Particular Application to Water. Mol. Phys., 71, 931. [CrossRef] [Google Scholar]
  • Dayhoff, M.O., Lippincott, E.R., Eck, R.V. and Nagarajan, G. (1967) Thermodynamic Equilibrium in Prebiological Atmospheres of C, H, O, N, P, S, and Cl. NASA, 249. [Google Scholar]
  • Delhommelle, J. (2000) Etablissement de potentiels d’interaction pour la simulation moléculaire - Application à la prédiction des équilibres liquide-vapeur de mélanges binaires alcane-molécule multipolaire. Thesis, Orsay, Paris XI, 169. [Google Scholar]
  • Delhommelle, J., Tschirwitz, C., Ungerer, P., Granucci, G., Millié, P, Pattou, D. and Fuchs, A.H. (2000) Derivation of an Optimized Potential Model for Phase Equilibria (OPPE) for Sulfides and Thiols. Journal of Physical Chemistry, B, 104, 4745-4753. [Google Scholar]
  • Delhommelle, J. and Millié, Ph. (2001) Inadequacy of the Lorentz-Berthelot Combining Rules for Accurate Predictions of Equilibrium Properties by Molecular Simulation. Molecular Physics, 99, 619-625. [CrossRef] [Google Scholar]
  • Dodd, L.R.,Boone, T.D. and Theodorou, D.N. (1993) A Concerted Rotation Algorithm for Atomistic Monte Carlo Simulation of Polymer Melts and Glasses. Mol. Phys., 78, 961-996. [CrossRef] [Google Scholar]
  • Doligez, B., Ungerer, P., Ch譥t, P.Y., Burrus, J., Bessis, F. and Bessereau, G. (1987) Numerical Modelling of Sedimentation, Heat Transfer, Hydrocarbon Formation and Fluid Migration in the Viking Graben, North Sea. Petroleum Geology of NorthWest Europe. J.B. and K. Glennie, Graham and Trotman, 1039-1048. [Google Scholar]
  • Doué, F. and Guiochon, G. (1968) Étude théorique et expérimentale de la cinétique de décomposition chimique du n-hexadécane, de son mécanisme et de la composition du mélange de produits obtenus. Journal de chimie physique et de physico-chimie biologique, 64, 395-409. [Google Scholar]
  • Duin, A.C.T. van, Dasgupta, S., Lorant, F. and Goddard, W.A. (2001) A Reactive Force Field for Hydrocarbons. Journal of Physical Chemistry, A, 105, 9396-9409. [Google Scholar]
  • Durand, B., Ed. (1980) Kerogen, Insoluble Organic Matter from Sedimentary Rocks, Éditions Technip, Paris. [Google Scholar]
  • Durand, B. (1983) Present Trends in Organic Geochemistry in Research on Migration of Hydrocarbons. 10th International Meeting on Organic Geochemistry, Bergen, Wiley. [Google Scholar]
  • Durand, J.P.,Fafet, A. and Barreau, A. (1989) Direct and Automatic Capillary GC Analysis for Molecular Weight Determination and Distribution in Crude Oils and Condensates up to C20. Journal of High Resolution Chromatography, 12, 230-233. [CrossRef] [MathSciNet] [Google Scholar]
  • Dysthe, D.,Fuchs, A.H. and Rousseau, B. (1999) Fluid Transport Properties by Equilibrium Molecular Dynamics. I. Methodology at Extreme Fluid States. Journal of Chemical Physics, 110, 4047. [CrossRef] [Google Scholar]
  • Dysthe, D.,Fuchs, A.H. and Rousseau, B. (1999) Fluid Transport Properties by Equilibrium Molecular Dynamics. II. Multicomponent Systems. Journal of Chemical Physics, 110, 4060. [CrossRef] [Google Scholar]
  • Dysthe, D.,Fuchs, A.H. and Rousseau, B. (2000) Fluid Transport Properties by Equilibrium Molecular Dynamics. III. Evaluation of United atom Interaction Potential Models for Pure Alkanes. Journal of Chemical Physics, 112, 7581. [CrossRef] [Google Scholar]
  • Errington, J.R. and Panagiotopoulos, A.Z. (1999) New Intermolecular Potential Models for Benzene and Cyclohexane. J. Chem. Phys., 111, 9731. [CrossRef] [Google Scholar]
  • Errington, J.R., Boulougouris, G.C., Economou, I.G., Panagiotopoulos, A.Z. and Theodorou, D.N. (2000) Molecular Simulation of Phase Equilibria for Water - n-Butane and Water - n-Hexane Mixtures. J. Phys. Chem., B, 104, 4958. [Google Scholar]
  • Escobedo, F.A. (1999) Tracing Coexistence Lines in Multicomponent Fluid Mixtures by Molecular Simulation. Journal of Chemical Physics, 110, 11999-12010. [CrossRef] [Google Scholar]
  • Escobedo, F.A. (1998) Novel Pseudoensembles for Simulation of Multicomponent Phase Equilibria. J. Chem. Phys., 108, 8761-8772. [CrossRef] [Google Scholar]
  • Escobedo, F.A. and Chen, Z. (2001) Simulation of Isoenthalps and Joule-Thomson Inversion Curves of Pure Fluids and Mixtures. Molecular Simulation, 26, 395-416. [CrossRef] [Google Scholar]
  • Espitalié, J.,Deroo, G. and Marquis, F. (1985) La pyrolyse Rock- Eval et ses applications (1). Oil & Gas Science and Technology, 40, 563-579. [CrossRef] [EDP Sciences] [Google Scholar]
  • Espitali窠J.,Ungerer, P.,Irwin, I. and Marquis, F. (1988) Primary Cracking of Kerogens. Experimenting and Modelling C1, C2-C5, C6-C15 and C15+ Classes of Hydrocarbons Formed. Organic Geochemistry, 13, 893-899. [CrossRef] [Google Scholar]
  • Faille, I. (1992) Modélisation bidimensionnelle de la genèse et la migration des hydrocarbures dans un bassin sédimentaire. Thèse de doctorat en mathématiques appliquées, Grenoble, université Joseph Fourier. [Google Scholar]
  • Flöter, E. (1999) Hyperbaric Reservoir Fluids - Phase Behaviour of Model Systems. Thèse de doctorat, Delft, Technische Universiteit Delft. [Google Scholar]
  • Forbes, P.,Ungerer, P.,Kuhfuss, A.,Riis, F. and Eggen, S. (1991) Compositional Modeling of Petroleum Generation and Expulsion: Trial Application to a Local Mass Balance in the Smorbukk Sor Field, Haltenbanken Area, Norway. American Association of Petroleum Geologists Bulletin, 75, 5, 873-893. [Google Scholar]
  • Fredenslund, A., Gmehling, J. and Rasmussen, P. (1977) Vapour- Liquid Equilibrium Using UNIFAC, New York, Elsevier. [Google Scholar]
  • Frenkel, D. and Smit, B. (1996) Understanding Molecular Simulation, San Diego, Academic Press. [Google Scholar]
  • Gil-Villegas, A.,Galindo, A.,Whitehead, P.J.,Mills, S.J. and Jackson, G. (1997) Statistical Associating Fluid Theory for Chain Molecules with Attractive Potentials of Variable Range. J. Chem. Phys., 106, 4168-4186. [CrossRef] [Google Scholar]
  • Glaser, M., Peters, C.J., Kooi, H.J.V. de and Lichtenthaler, R.W. (1985) Phase Equilibria of the System Methane + n-Hexadecane. J. Chem. Thermodynamics, 17, 803-815. [CrossRef] [Google Scholar]
  • Go, N. and Sheraga, H.A. (1976) On the Use of Classical Statistical Mechanics in the Treatment of Polymer Chain Conformation. Macromolecules, 9, 535. [CrossRef] [Google Scholar]
  • Goujon, F.,Malfreyt, P.,Boutin, A. and Fuchs, A.H. (2001) Vapour-Liquid Phase Equilibria of n-Alkanes by Direct Monte Carlo Simulations. Molecular Simulation, 27, 99-114. [CrossRef] [Google Scholar]
  • Gray, C.G. and Gubbins, K.E. (1984) Theory of Molecular Fluids, Oxford, Oxford Science. [Google Scholar]
  • Hemptinne, J.C. de and Ungerer, P. (1995) Accuracy of the Volumetric Predictions of Some Important Equations of State for Hydrocarbons, Including a Modified Version of the Lee-Kesler Method. Fluid Phase Equilibria, 106, 81-109. [CrossRef] [Google Scholar]
  • Huron, M.J. and Vidal, J. (1979) New Mixing Rules in Simple Equations of State for Representing Vapor-Liquid Equilibria of Strongly Non-Ideal Mixtures. Fluid Phase Equilibria, 1, 247-265. [CrossRef] [Google Scholar]
  • Jorgensen, W.L.,Chandrasekhar, J. and Madura, J.D. (1983) Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys., 79, 926-935. [NASA ADS] [CrossRef] [Google Scholar]
  • Jorgensen, W.L. and Madura, J.D. (1984) Optimized Inter- Molecular Potential Functions for Liquid Hydrocarbons. Journal of the American Chemical Society, 106, 6638. [CrossRef] [Google Scholar]
  • Jorgensen, W.L. (1986) Optimized Intermolecular Potential Functions for Liquid Alcohols. J. Phys. Chem., 90, 1276-1284. [CrossRef] [Google Scholar]
  • Kaminsky, R.D. (1994) Monte Carlo Evaluation of Ensemble Averages Involving Particle Number Variations in Dense Fluid Systems. J. Chem. Phys., 101, 4986. [CrossRef] [Google Scholar]
  • Katzenski, G. and Schneider, G.M. (1982) Excess Volumes of Liquid n-Alkane Binaries from 10 to 200 MPa at 298.15K. J. Chem. Thermodynamics, 14, 801-802. [CrossRef] [Google Scholar]
  • Kofke, D.A. (1993) Direct Evaluation of Phase Coexistence by Molecular Simulation via Integration Along the Saturation Line. Journal of Chemical Physics, 98, 4149. [CrossRef] [Google Scholar]
  • Kofke, D.A. and Cummings, P.T. (1997) Quantitative Comparison and Optimization of Methods for Evaluating the Chemical Potential by Molecular Simulation. Molecular Physics, 92, 973. [CrossRef] [Google Scholar]
  • Kooi, H.J. van de (1981) Metingen en berekningen aan het systeem methaan-n-eicosaan. PhD Thesis, Delft Technical University. [Google Scholar]
  • Kressmann, S., Dominé, F., Enguehard, F., Béhar, F., Ungerer, P. Billaud, F. and Goffe, B. (1990) Secondary Cracking of Crude Oils: Experimental Simulation and Kinetic Interpretation on Model Compounds. Organic Geochemistry, 16. [Google Scholar]
  • Kressmann, S. (1991) Craquage thermique de mélanges d’hydrocarbures à haute pression : étude cinétique expérimentale et modélisation numérique, implications pour la géochimie pétrolière. Thèse, Université Pierre et Marie Curie (Paris VI). [Google Scholar]
  • Kristof, T. and Liszi, J. (1997) Effective Intermolecular Potential for Fluid Hydrogen Sulfide. J. Phys. Chem., B, 101, 5480-5483. [Google Scholar]
  • Lachet, V.,Boutin, A.,Tavitian, B. and Fuchs, A.H. (1997) Grand Canonical Monte Carlo Simulations of Adsorption of Xylene Molecules in Faujasite Zeolites. Faraday Discuss., 106, 307. [CrossRef] [Google Scholar]
  • Lagache, M.,Ungerer, P.,Boutin, A. and Fuchs, A.H. (2001) Prediction of Thermodynamic Derivative Properties of Fluids by Monte Carlo Simulation. Physical Chemistry Chemical Physics, 3, 4333-4339. [CrossRef] [Google Scholar]
  • Lee, B.I. and Kesler, M.G. (1975) A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding States. AIChE Journal, 21, 510. [CrossRef] [Google Scholar]
  • LeRoy, S.,Béhar, E. and Ungerer, P. (1997) Vapour-Liquid Equilibrium Data for Synthetic Hydrocarbon Mixtures. Application to Modelling of Migration from Source to Reservoir Rocks. Fluid Phase Equilibria, 135, 63-82. [CrossRef] [Google Scholar]
  • Leythaeuser, D. and Yükler, A. (1982) Role of Diffusion in Primary Migration of Hydrocarbons. American Association of Petroleum Geologists Bulletin, 66, 408-429. [Google Scholar]
  • Macedonia, M.D. and Maginn, E.J. (1999) A Biased Grand Canonical Monte Carlo Method for Simulating Adsorption Using All-Atom and Branched United Atom Models. Mol. Phys., 96, 1375-1390. [CrossRef] [Google Scholar]
  • Mackie, A.,Tavitian, B.,Boutin, A. and Fuchs, A.H. (1997) Vapour-Liquid Phase Equilibria Predictions of Methane-Alkane Mixtures by Monte Carlo Simulation. Molecular Simulation, 1, 19. [Google Scholar]
  • Marteau, P., Tobaly, P., Ruffier-Meray, V. and Hemptinne, J.C. de (1998) High Pressure Phase Diagrams of Methane- + Squalane and Methane + Hexatriacontane Mixtures. J. Chem. Eng. Data, 43, 362-366. [Google Scholar]
  • Martin, M.G. and Siepmann, I.J. (1998) Transferable Models for Phase Equilibria 1. United-Atom Description of n-Alkanes. Journal of Physical Chemistry, B, 102, 2569. [Google Scholar]
  • Martin, M.G. and Siepmann, I.J. (1999) Novel Configurational- Bias Monte Carlo Method for Branched Molecules. Transferable Ppotentials for Phase Equilibria. 2. United-Atoms Description of Branched Alkanes. Journal of Physical Chemistry, B, 103, 4508. [Google Scholar]
  • McAuliffe, C.D. (1980) Physical and Chemical Constraints on Petroleum Migration. Studies in Geology 10. Tulsa, American Association of Petroleum Geologists, 89-108. [Google Scholar]
  • McQuarrie, D.A. (1976) Statistical Mechanics, Harper and Collins. [Google Scholar]
  • Mehta, M. and Kofke, D.A. (1994) Coexistence Diagrams of Mixtures by Molecular Simulation. Chemical Engineering Science, 49, 2633-2645. [CrossRef] [Google Scholar]
  • Metropolis, N.,Rosenbluth, A.W.,Rosenbluth, M.N.,Teller, A.H. and Teller, E. (1953) Equation of State Calculations by Fast Computing Machines. J. Chem. Phys., 21, 1087. [NASA ADS] [CrossRef] [Google Scholar]
  • Michelsen, M.L. (1980) Calculation of Phase Envelopes and Critical Points for Multicomponent Mixtures. Fluid Phase Equilibria, 4, 1-10. [CrossRef] [Google Scholar]
  • Miyano, Y. (1998) Vapor-Liquid Equilibria from Molecular Simulations Using the Algorithm in Equation of State Calculations. Fluid Phase Equilibria, 144, 137-144. [CrossRef] [Google Scholar]
  • Möller, D., Oprzynski, J., Müller, A. and J. Fischer (1992) Prediction of Thermodynamic Properties of Fluid Mixtures by Molecular Dynamics Simulations: Methane - Ethane. Mol. Phys., 75, 363. [Google Scholar]
  • Münster, A. (1969) Statistical Thermodynamics, Berlin, Springer. [Google Scholar]
  • Nath, S.A., Escobedo, F.A. and Pablo, J.J. de (1998) On the Simulation of Vapour-Liquid Equilibria for Alkanes. Journal of Chemical Physics, 108, 9905. [Google Scholar]
  • Nath, S.K. and Pablo, J.J. de (2000) Simulation of Vapour-Liquid Equilibria for Branched Alkanes. Molecular Physics, 98, 231-238. [Google Scholar]
  • Neubauer, B.,Boutin, A.,Tavitian, B. and Fuchs, A.H. (1999) Gibbs Ensemble Simulation of Vapour-Liquid Equilibria of Cyclic Alkanes. Molecular Physics, 97, 769-776. [CrossRef] [Google Scholar]
  • Neubauer, B.,Delhommelle, J.,Boutin, A.,Tavitian, B. and Fuchs, A.H. (1999) Monte Carlo Simulations of Squalane in the Gibbs Ensemble. Fluid Phase Equilibria, 155, 167-176. [CrossRef] [Google Scholar]
  • Neubauer, B.,Tavitian, B.,Boutin, A. and Ungerer, P. (1999) Molecular Simulations on Volumetric Properties of Natural Gas. Fluid Phase Equilibria, 161, 45-62. [CrossRef] [Google Scholar]
  • Nichita, D., Goual, L. and Firoozabadi, A. (1999) Wax Precipitation in Gas Condensate Mixtures. SPE Annual Conference, Houston. [Google Scholar]
  • Nogaret, E. (1983) Solubilité des hydrocarbures dans le gaz naturel comprimé: application à la migration du pétrole dans les bassins sédimentaires. Thèse, École nationale supérieure des Mines de Paris. [Google Scholar]
  • Pablo, J.J. de,Laso, M. and Suter, U.W. (1992) Simulation of Polyethylene Above and Below the Melting Point. J. Chem. Phys., 96, 2395. [CrossRef] [Google Scholar]
  • Panagiotopoulos, A.Z. (1987) Direct Determination of Phase Coexistence Properties of Fluids by Monte Carlo Simulation in a New Ensemble. Molecular Physics, 61, 813-826. [CrossRef] [Google Scholar]
  • Pandit, S.P. and Kofke, D.A. (1999) Evaluation of a Locus of Azeotropes by Molecular Simulation. AIChE Journal, 45, 2237. [CrossRef] [Google Scholar]
  • Pedersen, K.S., Fredenslund, A. and Thomassen, P. (1989) Properties of Oils and Natural Gases, Gulf. [Google Scholar]
  • P譥loux, A.,Rauzy, E. and Freze, R. (1982) A Consistent Correction for Redlich-Kwong-Soave Volumes. Fluid Phase Equilibria, 8, 7-23. [CrossRef] [Google Scholar]
  • Peng, D.Y. and Robinson, D.B. (1976) A New Two-Constant Equation of State. Industrial Chemical Engineering Fundamentals, 15, 59-64. [CrossRef] [Google Scholar]
  • Petrov, A.A. (1984) Petroleum Hydrocarbons, Berlin, Springer. [Google Scholar]
  • Potoff, J.J.,Errington, J.R. and Panagiotopoulos, A.Z. (1999) Molecular Simulation of Phase Equilibria for Mixtures of Polar and Non-Polar Components. Mol. Phys., 97, 1073. [CrossRef] [Google Scholar]
  • Price, L. (1976) Aqueous Solubility of Petroleum Applied to its Origin and Pprimary Migration. American Association of Petroleum Geologists Bulletin, 60, 213-244. [Google Scholar]
  • Rainwater, J.C. and Williamson, F.R. (1986) Vapor-Liquid Equilibrium of Near-Critical Binary Alkane Mixtures. Int. J. of Thermophysics, 7, 65-75. [CrossRef] [Google Scholar]
  • Rosenbluth, M.N. and Rosenbluth, A.W. (1955) Monte Carlo Calculation of the Average Extension of Molecular Chains. J. Chem. Phys., 23, 356. [CrossRef] [Google Scholar]
  • Rowley, R.L. (1994) Statistical Mechanics for Thermophysical Property Prediction, Prentice Hall. [Google Scholar]
  • Ruthven, D.M. (1984) Principles of Adsorption and Adsorption Processes. New York, Wiley. [Google Scholar]
  • Sant’Ana, H.B. de, Ungerer, P. and Hemptinne, J.C. de (1999) Evaluation of an Improved Volume Translation for the Prediction of Hydrocarbon Volumetric Properties. Fluid Phase Equilibria, 154, 193-204. [Google Scholar]
  • Smit, B.,Karaborni, S. and Siepmann, I.J. (1995) Computer Simulation of Vapor-Liquid Phase Equilibria of n-Alkanes. Journal of Chemical Physics, 102, 2126. [CrossRef] [Google Scholar]
  • Soave, G. (1972) Equilibrium Constants from a Modified Redlich-Kwong Equation of State. Chemical Engineering Science, 27, 1197-1203. [CrossRef] [Google Scholar]
  • Sportisse, M. (1996) Modélisation de propriétés thermodynamiques des gaz à condensat par représentation de la fraction lourde à l’aide de fonctions de distribution, Thèse Université de la Méditerrannée Aix-Marseille II, 197. [Google Scholar]
  • Sportisse, M.,Barreau, A. and Ungerer, P. (1997) Modeling of Gas Condensates Properties Using Continuous Distribution Functions for the Characterization of the Heavy Fraction. Fluid Phase Equilibria, 139, 255-276. [CrossRef] [Google Scholar]
  • Spyriouni, T.,Economou, I.G. and Theodorou, D.N. (1999) Molecular Simulation od Alpha-olefins Using a New United - Atom Potential Model: Vapor-Liquid Equilibria of Pure Compounds and Mixtures. J. Am. Chem. Soc., 121, 3407-3413. [CrossRef] [Google Scholar]
  • Sun, H. (1998) COMPASS: an Ab Initio Force-Field Optimized for Condensed Phase Applications - Overview with Details on Alkane and Benzene Compounds. J. Phys. Chem., B, 102, 7338-7364. [Google Scholar]
  • Sweeney, J.,Burnham, A.K. and Braun, R.L. (1987) A Model of Hydrocarbon Maturation from Type I Kerogen: Application to the Uinta basin, Utah. American Association of Petroleum Geologists Bulletin, 71, 967-985. [Google Scholar]
  • Tissot, B.P. and Espitalié, J. (1975) L’évolution de la matière organique des sédiments: application d'une simulation mathématique. Oil & Gas Science and Technology, 30, 743-777. [EDP Sciences] [Google Scholar]
  • Tissot, B.P. and Welte, D.H. (1984) Petroleum Formation and Occurrence, Berlin, Springer. [Google Scholar]
  • Tournier, H. (2000) Étude expérimentale and modélisation des équilibres d’adsorption compétitive d’aromatiques en phase liquide sur des faujasites X et Y. Dijon, Thèse université de Bourgogne, 256. [Google Scholar]
  • Toxvaerd, S. (1990) Molecular Dynamics Calculation of the Equation of State of Alkanes. Journal of Chemical Physics, 93, 4290. [CrossRef] [Google Scholar]
  • Toxvaerd, S. (1997) Equation of State for Alkanes II. Journal of Chemical Physic, 107, 5197. [CrossRef] [Google Scholar]
  • Ungerer, P., Béhar, E. and Discamps, D., Eds. (1983) Tentative Calculation of the Overall Volume Expansion of Organic Matter During Hydrocarbon Genesis from Geochemistry Data. Implications for Primary Migration. Advances in Organic Geochemistry, 1981, Wiley. [Google Scholar]
  • Ungerer, P., Bessis, F., Chénet, P.Y., Durand, B., Nogaret, E., Chiarelli, A., Oudin, B. and Perrin, J.F. (1984) Geological and Geochemical Models in Oil Exploration; Principles and Practical Examples. Petroleum Geochemistry and Basin Evaluation. R.J. Murris and G. Demaison eds, American Association of Petroleum Geologists, 35, 53-77. [Google Scholar]
  • Ungerer, P., Espitalié, J., Marquis, F. and Durand, B. (1985) Use of Kinetic Models of Organic Matter Evolution for the Reconstruction of Paleotemperatures. Application to the Case of the Gironville Well (France). Thermal Modeling of Sedimentary Basins, Carcans, Éditions Technip. [Google Scholar]
  • Ungerer, P., Bessereau, G., Junca, J. and Rabiller, P. (1987) Application d'un modèle de migration des hydrocarbures l’évaluation des permis. 12th World Petroleum Congress, Houston. [Google Scholar]
  • Ungerer, P. and Pelet, R. (1987) Extrapolation of the Kinetics of Oil and Gas Formation from Laboratory Experiments to Sedimentary Basins. Nature, 327, 6117, 52-54. [CrossRef] [Google Scholar]
  • Ungerer, P.,Béhar, F.,Villalba, M.,Heum, O.R. and Audibert, A. (1988) Kinetic Modelling of Oil Cracking. Organic Geochemistry, 13, 857-868. [CrossRef] [Google Scholar]
  • Ungerer, P. (1990) State of the Art of Research in Kinetic Modelling of Oil Formation and Expulsion. Organic Geochemistry, 16, 1-25. [CrossRef] [Google Scholar]
  • Ungerer, P.,Burrus, J.,Doligez, B.,Chénet, P.Y. and Bessis, F. (1990) Basin Evaluation by Integrated Two-Dimensional Modeling of Heat Transfer, Fluid Flow, Hydrocarbon Generation, and Migration. American Association of Petroleum Geologists Bulletin, 74, 3, 309-335. [Google Scholar]
  • Ungerer, P.,Burrus, J.,Doligez, B.,Chénet, P.Y. and Bessis, F. (1991) Évaluation des bassins par modélisation intégrée en deux dimensions des transferts thermiques, de l’écoulement des fluides, de la genèse et de la migration des hydrocarbures. Revue de l’Institut français du pétrole, 46, 1, 3-39. [Google Scholar]
  • Ungerer, P.,Faissat, B.,Leibovici, C.,Zhou, H.,Béhar, E.Moracchini, G. and Courcy, J.P. (1995) High Pressure - High Temperature Reservoir Fluids: Investigation of Synthetic Condensate Gases Containing a Solid Hydrocarbon. Fluid Phase Equilibria, 111, 287-311. [CrossRef] [Google Scholar]
  • Ungerer, P. and Batut, C. (1997) Prédiction des propriétés volumétriques des hydrocarbures par une translation de volume améliorée. Oil & Gas Science and Technology, 52, 6, 609-623. [CrossRef] [EDP Sciences] [Google Scholar]
  • Ungerer, P., Batut, C., Moracchini, G., Sant’Ana, H.B. de,Carrier, J. and Jensen, D.M. (1998) Measurement and Prediction of Volumetric and Transport Properties of Reservoir Fluids at High Pressure. Oil & Gas Science and Technology, 53, 3, 265-281. [EDP Sciences] [Google Scholar]
  • Ungerer, P.,Boutin, A., and Fuchs, A.H. (1999) Direct Calculation of Bubble Points by Monte Carlo Simulation. Molecular Physics, 97, 523-539. [CrossRef] [Google Scholar]
  • Ungerer, P.,Beauvais, C.,Delhommelle, J.,Boutin, A.,Rousseau, B. and Fuchs, A.H. (2000) Optimization of the Anisotropic United Atoms Intermolecular Potential for n-Alkanes. Journal of Chemical Physics, 112, 5499-5510. [CrossRef] [Google Scholar]
  • Ungerer, P.,Boutin, A. and Fuchs, A.H. (2001) Direct Calculation of Bubble Points for Alkane Mixtures by Monte Carlo Simulation. Molecular Physics, 99, 1423-1434. [CrossRef] [Google Scholar]
  • Vlugt, T.J.H., Krishna, R. and Smit, B. (1999) Molecular Simulations of Adsorption Isotherms for Linear and Branched Alkanes and their Mixtures in Silicalite. J. Phys. Chem., B, 103, 1102-1118. [Google Scholar]
  • Vrabec, J. and Fischer, J. (1995) Vapor-Liquid Equilibria of Mixtures from the NPT Plus Test Particle Method. Molecular Physics, 85, 781. [CrossRef] [Google Scholar]
  • Welte, D.H. and Yükler, A. (1981) Petroleum Origin and Accumulation in Basin Evolution - A Quantitative Model. American Association of Petroleum Geologists Bulletin, 65, 1387-1396. [Google Scholar]
  • Welte, D.H., Horsfield, B. and Baker, D.R. (1997) Petroleum and Basin Evolution, Berlin, Springer. [Google Scholar]
  • Widom, B. (1963) Some Topics in the Theory of Fluids. J. Chem. Phys., 39, 2808-2812. [CrossRef] [Google Scholar]
  • Wick, C.D., Martin, M.G. and Siepmann, J.I. (2000) Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes. J. Phys. Chem., B, 104, 8008. [Google Scholar]
  • Wimmer, E. (1993) Computational Materials Design: a Perspective for Atomistic Approaches. J. Computer-aided Materials Design, 1, 215-242. [CrossRef] [MathSciNet] [Google Scholar]
  • Wu, G.W. and Sadus, R.J. (2000) Molecular Simulation of the High-Pressure Phase Equilibria of Binary Atomic Fluid Mixtures Using the Exponential-6 Intermolecular Potential. Fluid Phase Equilibria, 170, 269-284. [CrossRef] [Google Scholar]
  • Yan, Q. and de Pablo, J.J. (1999) Hyper-Parallel Tempering Monte Carlo: Application to the Lennard-Jones Fluid and the Restricted Primitive Model. J. Chem. Phys., 111, 9509. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.