Dossier: Geomechanics in Reservoir Simulation - Rencontres Scientifiques IFP, December. 2001-Rueil-Malmaison - France
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 57, Number 5, September-October 2002
Dossier: Geomechanics in Reservoir Simulation - Rencontres Scientifiques IFP, December. 2001-Rueil-Malmaison - France
Page(s) 499 - 514
DOI https://doi.org/10.2516/ogst:2002033
Published online 01 December 2006
  • Aifantis, E.C. (1985) Introducing a Multi-Porous Medium. Developments in Mech., 9, 46-69. [Google Scholar]
  • Aziz, K. and Settari, A. (1979) Petroleum Reservoir Simulation, Applied Science Publisher, London. [Google Scholar]
  • Bai, M.,Elsworth, D. and Roegiers, J.C. (1993) Modelling of Naturally Fractured Reservoir Using Deformation Dependent Flow Mechanism. Int. J. Rock. Mech. Min. Sci. Geomech., 30, 1185-1191. [CrossRef] [Google Scholar]
  • Bai, M., Meng, F., Roegiers, J.C. and Abousleiman, Y. (1998) Modelling Two-Phase Fluid Flow and Rock Deformation in Fractured Porous Media. In Poromechanics, Thimus et al. (eds), Balkema, Rotterdam. [Google Scholar]
  • Barenblatt, G.I., Zheltov, I.P and Kochina, I.N. (1960) Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks. J. Appl. Math. Mech., USSR, 24, 1286-1303. [Google Scholar]
  • Berryman, J.G. and Wang, H.F. (1995) The Elastic Coefficients of Double-Porosity Models for Fluid Transport in Jointed Rock. UCRL-JC-119722. [Google Scholar]
  • Biot, M.A. (1941) General Theory of Three-Dimensional Consolidation. J. App. Phys., 12, 155-163. [Google Scholar]
  • Chen, H.Y. and Teufel, L.W. (1998) Coupling Fluid-Flow and Geomechanics in Dual-Porosity Modeling of Naturally Fractured Reservoirs. Paper SPE 38884 presented at SPE Annual Technical Conference and Exhibition, San Antonio, Texas. [Google Scholar]
  • Cho, T.F.,Plesha, M.E. and Haimson, B.C. (1991) Continuum Modelling of Jointed Porous Rock. Int. J. Num. Anal. Meth. Geom., 15, 333-353. [CrossRef] [Google Scholar]
  • Firoozabadi, A. and Thomas, L.K. (1990) Sixth SPE Comparative Solution Project: Dual-Porosity Simulators. JPT, 42, 710-715. [CrossRef] [Google Scholar]
  • Ghafouri, H.R. and Lewis, R.W. (1996) A Finite Element Double Porosity Model for Heterogeneous Deformable Porous Media. Int. J. Num. Analy. Meth. Geom., 20, 831-844. [CrossRef] [Google Scholar]
  • Hughes, T.J.R. (2000) The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover Reprinted Series, New York. [Google Scholar]
  • Khaled, M.Y.,Beskos, D.E. and Aifantis, E.C. (1984) On the Theory of Consolidation with Double Porosity-III a Finite Element Formulation. Int. J. Num. Anal. Meth. Geom., 8, 101-123. [CrossRef] [Google Scholar]
  • Khalili, N. and Valliappan, S. (1996) Unified Theory of Flow and Deformation in Double Porous Media. European Journal of Mechanics, A/Solid, 15, 321-336. [Google Scholar]
  • Lewis, R.W. and Ghafouri, H.R. (1997) A Novel Finite Element Double Porosity Model for Multiphase Flow through Deformable Fractured Porous Media. Int. J. Num. Anal. Meth. Geom., 21, 789-816. [Google Scholar]
  • Lewis, R.W. and Schrefler, B.A. (1998) The Finite Element Method in the Static and Dynamics Deformation and Consolidation of Porous Media, 2nd Ed., John Wiley & Son, England. [Google Scholar]
  • Pao, W.K.S. (1998) Coupling Flow and Subsidence Model for Petroleum Reservoir. Fractured Reservoir Project. Confidential Report submitted to UWS, NGI, BP-AMOCO, TotalFinaElf and Norwegian Research Council. [Google Scholar]
  • Pao, W.K.S. (2000) Aspects of Continuum Modeling and Numerical Simulations of Coupled Multiphase Deformable Non- Isothermal Porous Continua. PhD Thesis, University of Wales Swansea, UK. [Google Scholar]
  • Pao, W.K.S.,Lewis, R.W. and Masters, I. (2001) A Fully Coupled Hydro-Thermo-Poro-Mechanical Model for Black Oil Reservoir Simulation. Int. J. Num. Analy. Meth. Geom., 25, 1229-1256. [CrossRef] [Google Scholar]
  • Pao, W.K.S, Masters, I. and Lewis, R.W. (1999) Integrated Flow and Subsidence Simulation for Hydrocarbon Reservoir. 7th Annual Conf. of ACME'99, 175-178. [Google Scholar]
  • Schrefler, B.A. and Gawin, D. (1996) The Effective Stress Principle: Incremental or Finite Form? Int. J. Numer. Analy. Meth. Geomch., 20, 785-815. [CrossRef] [Google Scholar]
  • Schrefler, B.A. and Simoni, L. (1991) Comparison between Different Finite Element Solutions for Immiscible Two-Phase Flow in Deforming Porous Media. In Comp. Meth. & Adv. Geomech., G. Beer et al. (eds.), 2, 1215-1220. [Google Scholar]
  • Thomas, L.K., Dixon, T.N. and Pierson, R.G. (1983) Fractured Reservoir Simulation. SPERE, 42-54. [Google Scholar]
  • Valliappan, S. and Khalili, N.S. (1990) Flow through Fissured Porous Media with Deformable Matrix. Int J. Num. Meth. Eng., 29, 1079-1094. [Google Scholar]
  • Warren, J.E. and Root, P.J. (1963) The Behaviour of Naturally Fractured Reservoir. Trans. AIME, SPEJ, 228, 244-255. [Google Scholar]
  • Wilson, R.K. and Aifantis, E.C. (1982) On the Theory of Consolidation with Double Porosity. Int. J. Engng. Sci., 20, 1009-1035. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.