Dossier: Geomechanics in Reservoir Simulation - Rencontres Scientifiques IFP, December. 2001-Rueil-Malmaison - France
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 57, Numéro 5, September-October 2002
Dossier: Geomechanics in Reservoir Simulation - Rencontres Scientifiques IFP, December. 2001-Rueil-Malmaison - France
Page(s) 499 - 514
DOI https://doi.org/10.2516/ogst:2002033
Publié en ligne 1 décembre 2006
  • Aifantis, E.C. (1985) Introducing a Multi-Porous Medium. Developments in Mech., 9, 46-69. [Google Scholar]
  • Aziz, K. and Settari, A. (1979) Petroleum Reservoir Simulation, Applied Science Publisher, London. [Google Scholar]
  • Bai, M.,Elsworth, D. and Roegiers, J.C. (1993) Modelling of Naturally Fractured Reservoir Using Deformation Dependent Flow Mechanism. Int. J. Rock. Mech. Min. Sci. Geomech., 30, 1185-1191. [CrossRef] [Google Scholar]
  • Bai, M., Meng, F., Roegiers, J.C. and Abousleiman, Y. (1998) Modelling Two-Phase Fluid Flow and Rock Deformation in Fractured Porous Media. In Poromechanics, Thimus et al. (eds), Balkema, Rotterdam. [Google Scholar]
  • Barenblatt, G.I., Zheltov, I.P and Kochina, I.N. (1960) Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks. J. Appl. Math. Mech., USSR, 24, 1286-1303. [Google Scholar]
  • Berryman, J.G. and Wang, H.F. (1995) The Elastic Coefficients of Double-Porosity Models for Fluid Transport in Jointed Rock. UCRL-JC-119722. [Google Scholar]
  • Biot, M.A. (1941) General Theory of Three-Dimensional Consolidation. J. App. Phys., 12, 155-163. [CrossRef] [Google Scholar]
  • Chen, H.Y. and Teufel, L.W. (1998) Coupling Fluid-Flow and Geomechanics in Dual-Porosity Modeling of Naturally Fractured Reservoirs. Paper SPE 38884 presented at SPE Annual Technical Conference and Exhibition, San Antonio, Texas. [Google Scholar]
  • Cho, T.F.,Plesha, M.E. and Haimson, B.C. (1991) Continuum Modelling of Jointed Porous Rock. Int. J. Num. Anal. Meth. Geom., 15, 333-353. [CrossRef] [Google Scholar]
  • Firoozabadi, A. and Thomas, L.K. (1990) Sixth SPE Comparative Solution Project: Dual-Porosity Simulators. JPT, 42, 710-715. [CrossRef] [Google Scholar]
  • Ghafouri, H.R. and Lewis, R.W. (1996) A Finite Element Double Porosity Model for Heterogeneous Deformable Porous Media. Int. J. Num. Analy. Meth. Geom., 20, 831-844. [CrossRef] [Google Scholar]
  • Hughes, T.J.R. (2000) The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover Reprinted Series, New York. [Google Scholar]
  • Khaled, M.Y.,Beskos, D.E. and Aifantis, E.C. (1984) On the Theory of Consolidation with Double Porosity-III a Finite Element Formulation. Int. J. Num. Anal. Meth. Geom., 8, 101-123. [CrossRef] [Google Scholar]
  • Khalili, N. and Valliappan, S. (1996) Unified Theory of Flow and Deformation in Double Porous Media. European Journal of Mechanics, A/Solid, 15, 321-336. [Google Scholar]
  • Lewis, R.W. and Ghafouri, H.R. (1997) A Novel Finite Element Double Porosity Model for Multiphase Flow through Deformable Fractured Porous Media. Int. J. Num. Anal. Meth. Geom., 21, 789-816. [CrossRef] [Google Scholar]
  • Lewis, R.W. and Schrefler, B.A. (1998) The Finite Element Method in the Static and Dynamics Deformation and Consolidation of Porous Media, 2nd Ed., John Wiley & Son, England. [Google Scholar]
  • Pao, W.K.S. (1998) Coupling Flow and Subsidence Model for Petroleum Reservoir. Fractured Reservoir Project. Confidential Report submitted to UWS, NGI, BP-AMOCO, TotalFinaElf and Norwegian Research Council. [Google Scholar]
  • Pao, W.K.S. (2000) Aspects of Continuum Modeling and Numerical Simulations of Coupled Multiphase Deformable Non- Isothermal Porous Continua. PhD Thesis, University of Wales Swansea, UK. [Google Scholar]
  • Pao, W.K.S.,Lewis, R.W. and Masters, I. (2001) A Fully Coupled Hydro-Thermo-Poro-Mechanical Model for Black Oil Reservoir Simulation. Int. J. Num. Analy. Meth. Geom., 25, 1229-1256. [CrossRef] [Google Scholar]
  • Pao, W.K.S, Masters, I. and Lewis, R.W. (1999) Integrated Flow and Subsidence Simulation for Hydrocarbon Reservoir. 7th Annual Conf. of ACME'99, 175-178. [Google Scholar]
  • Schrefler, B.A. and Gawin, D. (1996) The Effective Stress Principle: Incremental or Finite Form? Int. J. Numer. Analy. Meth. Geomch., 20, 785-815. [CrossRef] [Google Scholar]
  • Schrefler, B.A. and Simoni, L. (1991) Comparison between Different Finite Element Solutions for Immiscible Two-Phase Flow in Deforming Porous Media. In Comp. Meth. & Adv. Geomech., G. Beer et al. (eds.), 2, 1215-1220. [Google Scholar]
  • Thomas, L.K., Dixon, T.N. and Pierson, R.G. (1983) Fractured Reservoir Simulation. SPERE, 42-54. [Google Scholar]
  • Valliappan, S. and Khalili, N.S. (1990) Flow through Fissured Porous Media with Deformable Matrix. Int J. Num. Meth. Eng., 29, 1079-1094. [CrossRef] [Google Scholar]
  • Warren, J.E. and Root, P.J. (1963) The Behaviour of Naturally Fractured Reservoir. Trans. AIME, SPEJ, 228, 244-255. [Google Scholar]
  • Wilson, R.K. and Aifantis, E.C. (1982) On the Theory of Consolidation with Double Porosity. Int. J. Engng. Sci., 20, 1009-1035. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.