Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 55, Number 1, January-February 2000
Page(s) 67 - 85
Published online 01 November 2006
  • Martino, G. (1998) Réformage catalytique, in Le raffinage du pétrole, tome 3, Procédés de transformation, Leprince, P. (ed.), Éditions Technip, 105-173. [Google Scholar]
  • Clause, O., Dupraz, C. and Franck, J.P. (1998) Continuing Innovation in Cat. Reforming. 1998 NPRA Annual Meeting, San Francisco. [Google Scholar]
  • Trambouze, P., Van Landeghem, H. and Wauquier, J.P. (1984) Les réacteurs chimiques, Éditions Technip. [Google Scholar]
  • Lanot, C. (1996) Rhéologie des lits de catalyseurs. Applications aux lits mobiles. Thèse, université des Sciences et de Technologie de Lille. [Google Scholar]
  • Walzel, P. (1993) Liquid Atomisation. Int. Chem. Eng., 33, 1, 46-60. [Google Scholar]
  • Mason, B.J.,Jayarotne, O. and Woods, J. (1963) An Improved Vibrating Capillary Device for Producing Uniform Water Droplets. J. Sci. Instrum., 40, 247-249. [CrossRef] [Google Scholar]
  • Gotoh, T.,Honda, H.,Shiragami, N. and Unno, H. (1991) Forced Break-up of a Power-Law Fluid Discharged from an Orifice. J. Chem. Eng. of Japan, 24, 6, 799-801. [CrossRef] [Google Scholar]
  • He, W.,Baird, M.H.I. and Chang, J.S. (1991) The Effect of Electrical Field on Droplet Formation and Motion in a Viscous Liquid. Canadian J. of Chem. Eng., 60, 1174-1183. [CrossRef] [Google Scholar]
  • Cahen, R.M., Andre, J.M. and Debus, H.R. (1979) Process for the Production of a Spherical Catalyst. Preparation of Catalysts II, Elsevier Science Publishers, 585-593. [Google Scholar]
  • Sittig, M. (1973) Catalyst Manufacture Recovery and Use, NDC Editor, 116-117. [Google Scholar]
  • Olechowska, J.,Brak, M. and Popowicz, M. (1974) Preparation of Spherically Shaped Aluminium Oxide. Int. Chem. Eng., 14, 1, 90-93. [Google Scholar]
  • CONDEA Ghmb, Spheres Based on Pural Aluminas, Technical Brochure. [Google Scholar]
  • Ismagolov, Z.R.,Shepeleva, M.N.,Shkrabina, R.A. and Fenelonov, V.B. (1991) Interrelation between Structural and Mechanical Characteristics of Spherical Alumina Granules and the Initial Hydroxide Properties, Applied Catalysis, 69, 65-73. [CrossRef] [Google Scholar]
  • Mercier, F., Puiggali, J.R., Roques, M., Brunard, N. and Kolenda, F. (1998) Convective and Microwave Drying of Alumina Beads, Modelling of Shrinkage. Proceedings of the World Congress on Particle Technology, 3, Brighton. [Google Scholar]
  • ASTM Standard D4179 (1982) Single Pellet Crush Strength of Formed Catalyst Shapes, American Society for Testing Materials. [Google Scholar]
  • Ryu, H.J. and Saito, F. (1991) Single Particle Crushing of Non-Metallic Inorganic Brittle Materials, Solid State Ionics, 47, 35-50. [CrossRef] [Google Scholar]
  • Van den Born, I.C.,Santen, A.,Hoekstra, H.D. and Dehosson, J.T.M. (1991) Mechanical Strength of Highly Porous Ceramics. Physical Review E, 43, 4, 3794-3795. [CrossRef] [Google Scholar]
  • Rosenberg, E. (1998) Personal IFP Communication. [Google Scholar]
  • Rosenberg, E. (1998) Personal IFP Communication. Hiramatsu, Y. and Oka, Y. (1966) Determination of the Tensile Strength of Rock by a Compression Test of an Irregular Test Piece. Int. J. Rock Mech. & Min. Sci., 3, 89-99. [Google Scholar]
  • Schrans, S. (1994) Personal Communication. [Google Scholar]
  • Kenter, S.J. (1995) Wear and Fragmentation of Spherical Catalyst Particles. Thesis, University of Twente. [Google Scholar]
  • Lawn, B. (1993) Fracture of Brittle Solids, 2nd ed., University Press, Cambridge. [Google Scholar]
  • Yuregir, K.R.,Ghadiri, M. and Clift, R. (1987) Impact Attrition of Sodium Chloride Crystals. Chem. Eng. Sci., 42, 4, 843-853. [CrossRef] [Google Scholar]
  • Papadopoulos, D.G. and Ghadiri, M. (1996) Impact Breakage of Poly-methylmethacrylate (PMMA) Extrudates: I. Chipping Mechanism. Advanced Powder Technol., 7, 3, 183-197. [Google Scholar]
  • Arbiter, G.R.,Harris, C.C. and Stamboltzis, G.A. (1969) Single Fracture of Brittle Spheres. Trans AIME, 244, 118-133. [Google Scholar]
  • Ghadiri, M. and Zhang, Z. (1992) Impact Attrition of Particulate Solids. IFPRI Final Report, FRR 16-03, University of Surrey. [Google Scholar]
  • Ouwerkerk, C.E.D. (1991) A Micro-Mechanical Connection between the Single-Particle Strength and the Bulk Strength of Random Packing of Spherical Particles. Powder Technol., 65, 125-138. [CrossRef] [Google Scholar]
  • Paramanathan, B.K. and Bridgwater, J. (1983) Attrition of Solids: I. Cell Development. Chem. Eng. Sci., 38, 2, 197-206. [CrossRef] [Google Scholar]
  • Neil, A.U. and Bridgwater, J. (1994) Attrition of Particulate Solids under Shear. Powder Technol., 80, 207-219. [CrossRef] [Google Scholar]
  • Ghadiri, M. and Ning, Z. (1997) Effect of Shear Strain Rate on Attrition of Particulate Solids in a Shear Cell. Powder & Grains ’97, Durham, North Carolina. [Google Scholar]
  • Johnson, K.L. (1985) Contact Mechanics, University Press, Cambridge. [Google Scholar]
  • Pharr, G.M., Harding, D.S. and Oliver, W.C. (1993) Mechanical Properties and Deformation Behaviour of Materials Having Ultra-Fine Microstructures. Nastasi, M. et al. (eds.), Kluwer Academic Publishers, 449-461. [Google Scholar]
  • Arteaga, P.A., Bentham, A.C. and Ghadiri, M. (1995) Formation, Processing and Characterisation of Pharmaceutical Powders - Size Reduction of Pharmaceutical Powders, 1st Year Report, Tripartite Programme in Particle Technology. [Google Scholar]
  • Stevenson, A.N.J. and Hutchings, I.M. (1996) Indentation Fracture of Small Brittle Particles. J. Mater. Sci. Lett., 15, 8, 688-690. [CrossRef] [Google Scholar]
  • Anstis, G.R.,Chantikul, P.,Lawn, B.R. and Marshall, D.B. (1981) A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurement. J. Am. Ceram. Soc., 64, 533-538. [Google Scholar]
  • Pollock, H.M. (1992) Friction, Lubrication and Wear Technology. Metals Handbook, 18, ASME, 10th edition, Blau, P.J. (ed.), 419. [Google Scholar]
  • Arteaga, P.A.,Ghadiri, M.,Lawson, N. and Pollock, H.M. (1993) Use of Nanoindentation to Assess Potential Attrition of Particulate Solids. Tribology International, 26, 5, 305-310. [CrossRef] [Google Scholar]
  • Oliver, W.C. and Pharr, G.M. (1992) An Improved Technique for Determining Hardness and Elastic-Modulus using Load and Displacement Sensing Indentation Experiments. J. Mater. Res., 7, 6, 1564-1583. [NASA ADS] [CrossRef] [Google Scholar]
  • Bentham, A.C. et al. (1998) Formation, Processing and Characterisation of Pharmaceutical Powders. Proceedings of the World Congress on Particle Technology, 3, Brighton. [Google Scholar]
  • Cundall, P.A. and Strack, O.D.L (1979) A Discrete Numerical Model for Granular Assemblies. Geotechnique, 37, 47-65. [Google Scholar]
  • Ghadiri, M. and Zhang, Z. (1995) IFPRI Final Report, FRR 16-06, University of Surrey. [Google Scholar]
  • Couroyer, C., Ning, Z., Bassam, F. and Ghadiri, M. (1998) Bulk Crushing Behaviour of Porous Alumina Particles under Compressive Loading. Proceedings of the World Congress on Particle Technology, 3, Brighton. [Google Scholar]
  • Couroyer, C., Ning, Z., Ghadiri, M., Brunard, N., Kolenda, K., Bortzmeyer, D. and Laval, P. (1998) Compressive Loading of Macroporous Alumina Beads: Simulation and Experimental Validation. Proceedings of the 9th Eur. Symp. on Comminution, Albi. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.