Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 55, Numéro 1, January-February 2000
Page(s) 67 - 85
Publié en ligne 1 novembre 2006
  • Martino, G. (1998) Réformage catalytique, in Le raffinage du pétrole, tome 3, Procédés de transformation, Leprince, P. (ed.), Éditions Technip, 105-173. [Google Scholar]
  • Clause, O., Dupraz, C. and Franck, J.P. (1998) Continuing Innovation in Cat. Reforming. 1998 NPRA Annual Meeting, San Francisco. [Google Scholar]
  • Trambouze, P., Van Landeghem, H. and Wauquier, J.P. (1984) Les réacteurs chimiques, Éditions Technip. [Google Scholar]
  • Lanot, C. (1996) Rhéologie des lits de catalyseurs. Applications aux lits mobiles. Thèse, université des Sciences et de Technologie de Lille. [Google Scholar]
  • Walzel, P. (1993) Liquid Atomisation. Int. Chem. Eng., 33, 1, 46-60. [Google Scholar]
  • Mason, B.J.,Jayarotne, O. and Woods, J. (1963) An Improved Vibrating Capillary Device for Producing Uniform Water Droplets. J. Sci. Instrum., 40, 247-249. [CrossRef] [Google Scholar]
  • Gotoh, T.,Honda, H.,Shiragami, N. and Unno, H. (1991) Forced Break-up of a Power-Law Fluid Discharged from an Orifice. J. Chem. Eng. of Japan, 24, 6, 799-801. [CrossRef] [Google Scholar]
  • He, W.,Baird, M.H.I. and Chang, J.S. (1991) The Effect of Electrical Field on Droplet Formation and Motion in a Viscous Liquid. Canadian J. of Chem. Eng., 60, 1174-1183. [CrossRef] [Google Scholar]
  • Cahen, R.M., Andre, J.M. and Debus, H.R. (1979) Process for the Production of a Spherical Catalyst. Preparation of Catalysts II, Elsevier Science Publishers, 585-593. [Google Scholar]
  • Sittig, M. (1973) Catalyst Manufacture Recovery and Use, NDC Editor, 116-117. [Google Scholar]
  • Olechowska, J.,Brak, M. and Popowicz, M. (1974) Preparation of Spherically Shaped Aluminium Oxide. Int. Chem. Eng., 14, 1, 90-93. [Google Scholar]
  • CONDEA Ghmb, Spheres Based on Pural Aluminas, Technical Brochure. [Google Scholar]
  • Ismagolov, Z.R.,Shepeleva, M.N.,Shkrabina, R.A. and Fenelonov, V.B. (1991) Interrelation between Structural and Mechanical Characteristics of Spherical Alumina Granules and the Initial Hydroxide Properties, Applied Catalysis, 69, 65-73. [CrossRef] [Google Scholar]
  • Mercier, F., Puiggali, J.R., Roques, M., Brunard, N. and Kolenda, F. (1998) Convective and Microwave Drying of Alumina Beads, Modelling of Shrinkage. Proceedings of the World Congress on Particle Technology, 3, Brighton. [Google Scholar]
  • ASTM Standard D4179 (1982) Single Pellet Crush Strength of Formed Catalyst Shapes, American Society for Testing Materials. [Google Scholar]
  • Ryu, H.J. and Saito, F. (1991) Single Particle Crushing of Non-Metallic Inorganic Brittle Materials, Solid State Ionics, 47, 35-50. [CrossRef] [Google Scholar]
  • Van den Born, I.C.,Santen, A.,Hoekstra, H.D. and Dehosson, J.T.M. (1991) Mechanical Strength of Highly Porous Ceramics. Physical Review E, 43, 4, 3794-3795. [CrossRef] [Google Scholar]
  • Rosenberg, E. (1998) Personal IFP Communication. [Google Scholar]
  • Rosenberg, E. (1998) Personal IFP Communication. Hiramatsu, Y. and Oka, Y. (1966) Determination of the Tensile Strength of Rock by a Compression Test of an Irregular Test Piece. Int. J. Rock Mech. & Min. Sci., 3, 89-99. [Google Scholar]
  • Schrans, S. (1994) Personal Communication. [Google Scholar]
  • Kenter, S.J. (1995) Wear and Fragmentation of Spherical Catalyst Particles. Thesis, University of Twente. [Google Scholar]
  • Lawn, B. (1993) Fracture of Brittle Solids, 2nd ed., University Press, Cambridge. [Google Scholar]
  • Yuregir, K.R.,Ghadiri, M. and Clift, R. (1987) Impact Attrition of Sodium Chloride Crystals. Chem. Eng. Sci., 42, 4, 843-853. [CrossRef] [Google Scholar]
  • Papadopoulos, D.G. and Ghadiri, M. (1996) Impact Breakage of Poly-methylmethacrylate (PMMA) Extrudates: I. Chipping Mechanism. Advanced Powder Technol., 7, 3, 183-197. [Google Scholar]
  • Arbiter, G.R.,Harris, C.C. and Stamboltzis, G.A. (1969) Single Fracture of Brittle Spheres. Trans AIME, 244, 118-133. [Google Scholar]
  • Ghadiri, M. and Zhang, Z. (1992) Impact Attrition of Particulate Solids. IFPRI Final Report, FRR 16-03, University of Surrey. [Google Scholar]
  • Ouwerkerk, C.E.D. (1991) A Micro-Mechanical Connection between the Single-Particle Strength and the Bulk Strength of Random Packing of Spherical Particles. Powder Technol., 65, 125-138. [CrossRef] [Google Scholar]
  • Paramanathan, B.K. and Bridgwater, J. (1983) Attrition of Solids: I. Cell Development. Chem. Eng. Sci., 38, 2, 197-206. [CrossRef] [Google Scholar]
  • Neil, A.U. and Bridgwater, J. (1994) Attrition of Particulate Solids under Shear. Powder Technol., 80, 207-219. [CrossRef] [Google Scholar]
  • Ghadiri, M. and Ning, Z. (1997) Effect of Shear Strain Rate on Attrition of Particulate Solids in a Shear Cell. Powder & Grains ’97, Durham, North Carolina. [Google Scholar]
  • Johnson, K.L. (1985) Contact Mechanics, University Press, Cambridge. [Google Scholar]
  • Pharr, G.M., Harding, D.S. and Oliver, W.C. (1993) Mechanical Properties and Deformation Behaviour of Materials Having Ultra-Fine Microstructures. Nastasi, M. et al. (eds.), Kluwer Academic Publishers, 449-461. [Google Scholar]
  • Arteaga, P.A., Bentham, A.C. and Ghadiri, M. (1995) Formation, Processing and Characterisation of Pharmaceutical Powders - Size Reduction of Pharmaceutical Powders, 1st Year Report, Tripartite Programme in Particle Technology. [Google Scholar]
  • Stevenson, A.N.J. and Hutchings, I.M. (1996) Indentation Fracture of Small Brittle Particles. J. Mater. Sci. Lett., 15, 8, 688-690. [CrossRef] [Google Scholar]
  • Anstis, G.R.,Chantikul, P.,Lawn, B.R. and Marshall, D.B. (1981) A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurement. J. Am. Ceram. Soc., 64, 533-538. [Google Scholar]
  • Pollock, H.M. (1992) Friction, Lubrication and Wear Technology. Metals Handbook, 18, ASME, 10th edition, Blau, P.J. (ed.), 419. [Google Scholar]
  • Arteaga, P.A.,Ghadiri, M.,Lawson, N. and Pollock, H.M. (1993) Use of Nanoindentation to Assess Potential Attrition of Particulate Solids. Tribology International, 26, 5, 305-310. [CrossRef] [Google Scholar]
  • Oliver, W.C. and Pharr, G.M. (1992) An Improved Technique for Determining Hardness and Elastic-Modulus using Load and Displacement Sensing Indentation Experiments. J. Mater. Res., 7, 6, 1564-1583. [NASA ADS] [CrossRef] [Google Scholar]
  • Bentham, A.C. et al. (1998) Formation, Processing and Characterisation of Pharmaceutical Powders. Proceedings of the World Congress on Particle Technology, 3, Brighton. [Google Scholar]
  • Cundall, P.A. and Strack, O.D.L (1979) A Discrete Numerical Model for Granular Assemblies. Geotechnique, 37, 47-65. [Google Scholar]
  • Ghadiri, M. and Zhang, Z. (1995) IFPRI Final Report, FRR 16-06, University of Surrey. [Google Scholar]
  • Couroyer, C., Ning, Z., Bassam, F. and Ghadiri, M. (1998) Bulk Crushing Behaviour of Porous Alumina Particles under Compressive Loading. Proceedings of the World Congress on Particle Technology, 3, Brighton. [Google Scholar]
  • Couroyer, C., Ning, Z., Ghadiri, M., Brunard, N., Kolenda, K., Bortzmeyer, D. and Laval, P. (1998) Compressive Loading of Macroporous Alumina Beads: Simulation and Experimental Validation. Proceedings of the 9th Eur. Symp. on Comminution, Albi. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.