Open Access

Table 5

Performance comparison of 15 ANN with different BLPA and number of neurons in the hidden layer.

BPLA Function Na Epochs MSEb (R2)c
BFGS quasi-Newton back-propagation Trainbfg 5 9 4.4748 × 10−5 0.8704
Conjugate gradient back-propagation with Powell-Beale restarts Traincgb 5 31 7.6523 × 10−6 0.9934
Conjugate gradient back-propagation with Fletcher-Reeves updates Traincgf 5 32 3.5988 × 10−5 0.9823
Conjugate gradient back-propagation with Polak-Ribiére updates Traincgp 5 17 1.1361 × 10−4 0.9327
Gradient descent with adaptive learning rate back-propagation Traingda 5 240 7.4223 × 10−5 0.9233
Gradient descent with momentum back-propagation Traingdm 5 1000 1.2444 × 10−4 0.4658
Gradient descent with momentum and adaptive learning rate back-propagation Traingdx 5 261 7.8924 × 10−5 0.9414
Levenberg-Marquardt back-propagation Trainlm 5 10 2.4115 × 10−6 0.9953
One-step secant back-propagation Trainoss 5 9 1.0892 × 10−4 0.8508
Resilient back-propagation Trainrp 5 40 2.1994 × 10−5 0.9922
Scaled conjugate gradient back-propagation Trainscg 5 15 4.9185 × 10−5 0.9517
Levenberg-Marquardt back-propagation Trainlm 2 24 9.6908 × 10−5 0.9833
Levenberg-Marquardt back-propagation Trainlm 3 17 9.6355 × 10−6 0.9936
Levenberg-Marquardt back-propagation Trainlm 4 16 9.6565 × 10−6 0.9919
Levenberg-Marquardt back-propagation Trainlm 6 11 1.0432 × 10−5 0.9923
a

N is number of neurons in the hidden layer;

b

MSE values are the best validation performance of the used ANN;

c

R2 values are related to all data involved the training, validation and test data set.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.