Regular Article
Optimization of development mode of asphalt profile control based on numerical simulation and study of its mechanism
1
E&D Research Institute of Oilfield Company Ltd., 163712 Daqing, PR China
2
School of Electrical and Information Technology, Heilongjiang Bayi Agricultural University, 163319 Daqing, PR China
3
NorthEast Petroleum University, 163318 Daqing, PR China
* Corresponding author: 57026413@qq.com
Received:
17
January
2020
Accepted:
25
March
2020
Asphalt profile control is an effective method, which can further improve oil recovery of reservoir polymer flooded, it has a lot of advantages including high strength profile control, seal strata formation efficiency, low cost and no pollution, but there has not a perfect evaluation system for its development mode. The effect of different concentration, injection rate, radius of profile control, the timing of profile and segment combination way on the oil displacement effect of the asphalt profile control were researched using numerical simulation method on actual typical well area in Daqing oilfield, and the mechanism of asphalt profile control was studied in detail. According to the results of laboratory test, the largest Enhanced Oil Recovery (EOR) of asphalt was obtained at injection concentration 4000 mg/L, and the best combination was “high–low–high” concentration slug mode. According to the results of numerical simulation, the best concentration, injection rate, radius of profile control and injection timing were 4000 mg/L, 0.15 PV/a (Pore Volume [PV], m3), 1/2 of well spacing and 96% water cut in single slug of asphalt injection system, when the injection condition was multiple slug, the “high–low–high” slug combination mode was the best injection mode. These results could provide effective development basis for asphalt profile control after polymer flooding in thick oil layers.
© F. Wang et al., published by IFP Energies nouvelles, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.