Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 65, Numéro 6, November-December 2010
Page(s) 903 - 912
DOI https://doi.org/10.2516/ogst/2009074
Publié en ligne 7 octobre 2010
  • Aljuwayhel N.F., Nellis G.F., Klein S.A. (2005) Parametric and internal study of the Vortex Tube using a CFD model, Int. J. Refrig. 28, 442-450. [CrossRef] [Google Scholar]
  • Balmer R.T. (1998) Pressure-driven Ranque-Hilsch temperature separation in liquids, J. Fluid. Eng.-T. ASME 110, 161-164. [CrossRef] [Google Scholar]
  • Cockerill T. (1995) The Ranque-Hilsch Vortex Tube, PhD Thesis, Cambridge University, Engineering Department, Sunderland. [Google Scholar]
  • Collins R.L., Lovelace R.B. (1997) Experimental study of twophase propane expanded through the Ranque-Hilsch Tube, J. Heat Trans.-T. ASME 101, 300-305. [CrossRef] [Google Scholar]
  • Dincera K., Baskayab S., Uysalc B.Z., Ucguld I. (2009) Experimental investigation of the performance of a Ranque-Hilsch Vortex Tube with regard to a plug located at the hot outlet, Int. J. Refrig. 32, 87-94. [CrossRef] [Google Scholar]
  • Eiamsa-ard S., Promvonge P. (2008) Review of Ranque-Hilsch effects in Vortex Tubes, Renew. Sust. Energ. Rev. 12, 1822-1842. [Google Scholar]
  • Hilsch R. (1947) The use of expansion of gases in a centrifugal field as a cooling process, Rev. Sci. Instrum. 18, 2, 108-113. [CrossRef] [PubMed] [Google Scholar]
  • ISO-51671, Measurement of fluid flow by means of pressure differential devices inserted in circular-cross section conduits running full – Part 1: General principles and requirements; Part 2: Orifice plates. [Google Scholar]
  • Khodorkov L., Poshernev N.V., Zhidkov M.A. (2003) The Vortex Tube – a universal device for heating, cooling, cleaning, and drying gases and separating gas mixtures, Chem. Petrol. Eng. 39, 7-8, 409- 415. [Google Scholar]
  • Kulkarni M.R., Sardesai C.R. (2002) Enrichment of Methane concentration via separation of gases using Vortex Tubes, J. Energ. Eng. 128, 1, 1-12. [CrossRef] [Google Scholar]
  • Lin S., Chen J.R., Vatistas G.H. (1990) A heat transfer relation for swirl flow in a Vortex Tube, Can. J. Chem. Eng. 68, 6, 944-947. [CrossRef] [Google Scholar]
  • Lewins J., Bejan A. (1995) Vortex Tube optimization theory, Energy 24, 931-943. [CrossRef] [Google Scholar]
  • Love W.J. (1974) Prediction of pressure drops in straight Vortex Tube, AIAA J. 12, 7. [CrossRef] [Google Scholar]
  • Moffat R.J. (1985) Using Uncertainty Analysis in the Planning of an Experiment, J. Fluid. Eng.-T. ASME 107, 173-178. [Google Scholar]
  • Nikolaev V.V., Ovchinnikov V.P., Zhidkov M.A. (1995) Experience from the operation of a variable Vortex Tube in a gas separating station, Gaz. Prom. 10, 13. [Google Scholar]
  • Nimbalkar S.U., Muller M.R. (2009) An experimental investigation of the optimum geometry for the cold end orifice of a Vortex Tube, Appl. Therm. Eng. 29, 509-514. [CrossRef] [Google Scholar]
  • Orhan A., Baki Muzaffer (2006) An experimental study on the design parameters of a counterflow Vortex Tube, Energy 31, 2763- 2772. [Google Scholar]
  • Piralishvili S.A., Polyaev V.M. (1996) Flow and thermodynamic characteristics of energy separation in a double-circuit Vortex Tubean experimental investigation, Exp. Therm. Fluid Sci. 12, 4, 399- 410. [CrossRef] [Google Scholar]
  • Piralishvili A., Fuzeeva A.A. (2005) Hydraulic characteristics of Ranque-Hilsch energy separators, High Temp. 43, 6, 900-907. [CrossRef] [Google Scholar]
  • Poshernev N.V., Khodorkov I.L. (2004) Natural-gas tests on a Conical Vortex Tube (CVT) with external cooling, Chem. Petrol. Eng.+ 40, 3-4, 212-217. [CrossRef] [Google Scholar]
  • Ranque G.J. (1993) Experiments on expansion in a Vortex with simultaneous exhaust of hot air and cold air, J. Phys. Radium (Paris) 4, 112-4 S-115. Also translated as General Electric Co., Schenectady Works Library 1947; T.F. 3294. [Google Scholar]
  • Ranque G.J. (1934) Method and apparatus for obtaining from a fluid under pressure two outputs of fluid at different temperatures, US patent 1:952,281. [Google Scholar]
  • Saidi M.H., Valipour M.S. (2003) Experimental modeling of Vortex Tube refrigerator, Appl. Therm. Eng. 23, 1971-1980, doi:10.1016/S1359-4311(03)00146-7. [CrossRef] [Google Scholar]
  • Skye H.M., Nellis, G.F., Klein S.A. (2006) Comparison of CFD analysis to empirical data in a commercial Vortex Tube, Int. J. Refrig. 29, 71-80. [CrossRef] [EDP Sciences] [Google Scholar]
  • Silverman P.M. (1982) The Vortex Tube: a violation of the second law, Eur. J. Phys. 3, 88-92. [CrossRef] [Google Scholar]
  • Stephan K., Lin S., Durst M., Huang F., Seher D. (1983) An investigation of energy separation in a Vortex Tube, Int. J. Heat Mass Tran. 26, 341-348. [Google Scholar]
  • Takahama H., Kawamura H., Kato S., Yokosawa H. (1979) Performance characteristics of energy separation in a steam-operated Vortex Tube, Int. J. Eng. Sci. 17, 735-744. [CrossRef] [Google Scholar]
  • Wu Y.T. et al. (2007) Modification and experimental research on Vortex Tube, Int. J. Refrigeration, doi:10.1016/j.ijrefrig.2007.01.013. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.