Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 65, Number 6, November-December 2010
Page(s) 903 - 912
DOI https://doi.org/10.2516/ogst/2009074
Published online 07 October 2010
  • Aljuwayhel N.F., Nellis G.F., Klein S.A. (2005) Parametric and internal study of the Vortex Tube using a CFD model, Int. J. Refrig. 28, 442-450. [CrossRef] [Google Scholar]
  • Balmer R.T. (1998) Pressure-driven Ranque-Hilsch temperature separation in liquids, J. Fluid. Eng.-T. ASME 110, 161-164. [CrossRef] [Google Scholar]
  • Cockerill T. (1995) The Ranque-Hilsch Vortex Tube, PhD Thesis, Cambridge University, Engineering Department, Sunderland. [Google Scholar]
  • Collins R.L., Lovelace R.B. (1997) Experimental study of twophase propane expanded through the Ranque-Hilsch Tube, J. Heat Trans.-T. ASME 101, 300-305. [CrossRef] [Google Scholar]
  • Dincera K., Baskayab S., Uysalc B.Z., Ucguld I. (2009) Experimental investigation of the performance of a Ranque-Hilsch Vortex Tube with regard to a plug located at the hot outlet, Int. J. Refrig. 32, 87-94. [CrossRef] [Google Scholar]
  • Eiamsa-ard S., Promvonge P. (2008) Review of Ranque-Hilsch effects in Vortex Tubes, Renew. Sust. Energ. Rev. 12, 1822-1842. [CrossRef] [Google Scholar]
  • Hilsch R. (1947) The use of expansion of gases in a centrifugal field as a cooling process, Rev. Sci. Instrum. 18, 2, 108-113. [CrossRef] [PubMed] [Google Scholar]
  • ISO-51671, Measurement of fluid flow by means of pressure differential devices inserted in circular-cross section conduits running full – Part 1: General principles and requirements; Part 2: Orifice plates. [Google Scholar]
  • Khodorkov L., Poshernev N.V., Zhidkov M.A. (2003) The Vortex Tube – a universal device for heating, cooling, cleaning, and drying gases and separating gas mixtures, Chem. Petrol. Eng. 39, 7-8, 409- 415. [Google Scholar]
  • Kulkarni M.R., Sardesai C.R. (2002) Enrichment of Methane concentration via separation of gases using Vortex Tubes, J. Energ. Eng. 128, 1, 1-12. [CrossRef] [Google Scholar]
  • Lin S., Chen J.R., Vatistas G.H. (1990) A heat transfer relation for swirl flow in a Vortex Tube, Can. J. Chem. Eng. 68, 6, 944-947. [CrossRef] [Google Scholar]
  • Lewins J., Bejan A. (1995) Vortex Tube optimization theory, Energy 24, 931-943. [CrossRef] [Google Scholar]
  • Love W.J. (1974) Prediction of pressure drops in straight Vortex Tube, AIAA J. 12, 7. [CrossRef] [Google Scholar]
  • Moffat R.J. (1985) Using Uncertainty Analysis in the Planning of an Experiment, J. Fluid. Eng.-T. ASME 107, 173-178. [CrossRef] [Google Scholar]
  • Nikolaev V.V., Ovchinnikov V.P., Zhidkov M.A. (1995) Experience from the operation of a variable Vortex Tube in a gas separating station, Gaz. Prom. 10, 13. [Google Scholar]
  • Nimbalkar S.U., Muller M.R. (2009) An experimental investigation of the optimum geometry for the cold end orifice of a Vortex Tube, Appl. Therm. Eng. 29, 509-514. [CrossRef] [Google Scholar]
  • Orhan A., Baki Muzaffer (2006) An experimental study on the design parameters of a counterflow Vortex Tube, Energy 31, 2763- 2772. [CrossRef] [Google Scholar]
  • Piralishvili S.A., Polyaev V.M. (1996) Flow and thermodynamic characteristics of energy separation in a double-circuit Vortex Tubean experimental investigation, Exp. Therm. Fluid Sci. 12, 4, 399- 410. [CrossRef] [Google Scholar]
  • Piralishvili A., Fuzeeva A.A. (2005) Hydraulic characteristics of Ranque-Hilsch energy separators, High Temp. 43, 6, 900-907. [CrossRef] [Google Scholar]
  • Poshernev N.V., Khodorkov I.L. (2004) Natural-gas tests on a Conical Vortex Tube (CVT) with external cooling, Chem. Petrol. Eng.+ 40, 3-4, 212-217. [CrossRef] [Google Scholar]
  • Ranque G.J. (1993) Experiments on expansion in a Vortex with simultaneous exhaust of hot air and cold air, J. Phys. Radium (Paris) 4, 112-4 S-115. Also translated as General Electric Co., Schenectady Works Library 1947; T.F. 3294. [Google Scholar]
  • Ranque G.J. (1934) Method and apparatus for obtaining from a fluid under pressure two outputs of fluid at different temperatures, US patent 1:952,281. [Google Scholar]
  • Saidi M.H., Valipour M.S. (2003) Experimental modeling of Vortex Tube refrigerator, Appl. Therm. Eng. 23, 1971-1980, doi:10.1016/S1359-4311(03)00146-7. [CrossRef] [Google Scholar]
  • Skye H.M., Nellis, G.F., Klein S.A. (2006) Comparison of CFD analysis to empirical data in a commercial Vortex Tube, Int. J. Refrig. 29, 71-80. [CrossRef] [EDP Sciences] [Google Scholar]
  • Silverman P.M. (1982) The Vortex Tube: a violation of the second law, Eur. J. Phys. 3, 88-92. [CrossRef] [Google Scholar]
  • Stephan K., Lin S., Durst M., Huang F., Seher D. (1983) An investigation of energy separation in a Vortex Tube, Int. J. Heat Mass Tran. 26, 341-348. [CrossRef] [Google Scholar]
  • Takahama H., Kawamura H., Kato S., Yokosawa H. (1979) Performance characteristics of energy separation in a steam-operated Vortex Tube, Int. J. Eng. Sci. 17, 735-744. [CrossRef] [Google Scholar]
  • Wu Y.T. et al. (2007) Modification and experimental research on Vortex Tube, Int. J. Refrigeration, doi:10.1016/j.ijrefrig.2007.01.013. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.