Capillarity in Porous Media: Recent Advances and Challenges
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Capillarity in Porous Media: Recent Advances and Challenges
Numéro d'article 48
Nombre de pages 12
Publié en ligne 29 juin 2021
  • Belhaj H., Abukhalifeh H., Javid K. (2013) Miscible oil recovery utilizing N2 and/or HC gases in CO2 injection, J. Pet. Sci. Eng. 111, 144–152. [Google Scholar]
  • Elsharkawy A.M., Poettmann F.H., Christiansen R.L. (1996) Measuring CO2 minimum miscibility pressures: Slim-tune or rising-bubble method? Energy Fuels 10, 443–449. [Google Scholar]
  • Yu W., Lashgari H., Wu K., Sepehrnoori K. (2015) CO2 injection for enhanced oil recovery in bakken tight oil reservoirs, Fuel 159, 354–363. [Google Scholar]
  • Lashgari H., Sun A., Zhang T., Pope G., Lake L. (2019) Evaluation of carbon dioxide storage and miscible gas EOR in shale oil reservoirs, Fuel 241, 1223–1235. [Google Scholar]
  • Holm L., Josendal V. (1974) Mechanisms of oil displacement by carbon dioxide, J. Pet. Technol. 26, 12, 1427–1438. [Google Scholar]
  • Lee J.I. (1979) Effectiveness of carbon dioxide displacement under miscible and immiscible conditions, Report RR-40, Petroleum Recovery Institute, Calgary. [Google Scholar]
  • Mungan N. (1981) Carbon dioxide flooding-fundamentals, J. Can. Pet. Technol. 20, 01, 87–92. [Google Scholar]
  • Orr F., Jensen C. (1984) Interpretation of pressure-composition phase diagrams for CO2/crude-oil systems, Soc. Pet. Eng. J. 24, 05, 485–497. [Google Scholar]
  • Zhang T., Li Y., Sun S. (2019) Phase equilibrium calculations in shale gas reservoirs, Capillarity 2, 1, 8–16. [Google Scholar]
  • ZareNezhad B. (2016) A new correlation for predicting the minimum miscibility pressure regarding the enhanced oil recovery processes in the petroleum industry, Pet. Sci. Technol. 34, 1, 56–62. [Google Scholar]
  • Li H., Qin J., Yang D. (2012) An improved CO2–oil minimum miscibility pressure correlation for live and dead crude oils, Ind. Eng. Chem. Res. 51, 8, 3516–3523. [Google Scholar]
  • Choubineh A., Helalizadeh A., Wood D.A. (2019) Estimation of minimum miscibility pressure of varied gas compositions and reservoir crude oil over a wide range of conditions using an artificial neural network model, Adv. Geo-Energy Res. 3, 1, 52–66. [Google Scholar]
  • Rathmell J.J., Stalkup F.I., Hassinger R.C. (1971) A laboratory investigation of miscible displacement by carbon dioxide, in: Fall Meeting of the Society of Petroleum Engineers of AIME, New Orleans, Louisiana, USA, October 3–6, 1971, Society of Petroleum Engineers. [Google Scholar]
  • Yellig W. (1982) Carbon dioxide displacement of a West Texas reservoir oil, SPE J. 22, 06, 805–815. [Google Scholar]
  • Christiansen R.L., Kim H. (1986) Apparatus and method for determining the minimum miscibility pressure of a gas in a liquid, Energy Fuels 10, 443–449. [Google Scholar]
  • Randall T., Bennion D. (1988) Recent developments in slim tube testing for HydroCarbon-Miscible Flood (HCMF) solvent design, J. Can. Pet. Technol. 27, 06, 33–44. [Google Scholar]
  • Rao D. (1997) A new technique of vanishing interfacial tension for miscibility determination, Fluid Phase Equilib. 139, 1–2, 311–324. [Google Scholar]
  • Nguyen P., Mohaddes D., Riordon J., Fadaei H., Lele P., Sinton D. (2015) Fast fluorescence-based microfluidic method for measuring minimum miscibility pressure of CO2 in crude oils, Anal. Chem. 87, 6, 3160–3164. [Google Scholar]
  • Metcalfe R.S., Fussell D.D., Shelton J.L. (1973) A multicell equilibrium separation model for the study of multiple contact miscibility in rich-gas drives, SPE J. 13, 3, 147–155. [Google Scholar]
  • Johns R., Orr F. (1996) Miscible gas displacement of multicomponent oils, SPE J. 1, 01, 39–50. [Google Scholar]
  • Wang Y., Orr F. (1997) Analytical calculation of minimum miscibility pressure, Fluid Phase Equilib. 139, 1–2, 101–124. [Google Scholar]
  • Ahmadi K., Johns R. (2011) Multiple-mixing-cell method for MMP calculations, SPE J. 16, 04, 733–742. [Google Scholar]
  • Neau E., Avaullée L., Jaubert J.N. (1996) A new algorithm for enhanced oil recovery calculations, Fluid Phase Equilib. 117, 265–272. [Google Scholar]
  • Weinaug C., Katz D. (1943) Surface tensions of methane-propane mixtures, Ind. Eng. Chem. 35, 2, 239–246. [Google Scholar]
  • Jaubert J.N., Wolff L., Neau E., Avaullée L. (1998) A very simple multiple mixing cell calculation to compute the minimum miscibility pressure whatever the displacement mechanism, Ind. Eng. Chem. Res. 37, 4854–4859. [Google Scholar]
  • Teklu T., Alharthy N., Kazemi H., Yin X., Graves R., AlSumaiti A. (2014) Phase behavior and minimum miscibility pressure in nanopores, SPE Reserv. Eval. Eng. 17, 03, 396–403. [Google Scholar]
  • Wang S., Ma M., Chen S. (2016) Application of PC-SAFT equation of state for CO2 minimum miscibility pressure prediction in nanopores, in: SPE Improved Oil Recovery Conference, Tulsa, Oklahoma, USA, April 11–13, 2016, Society of Petroleum Engineers. [Google Scholar]
  • Zhang K., Jia N., Zeng F., Luo P. (2017) A new diminishing interface method for determining the minimum miscibility pressures of light oil–CO2 systems in bulk phase and nanopores, Energy Fuels 31, 11, 12021–12034. [Google Scholar]
  • Zhang K., Jia N., Li S. (2017) Exploring the effects of four important factors on oil–CO2 interfacial properties and miscibility in nanopores, RSC Adv. 7, 85, 54164–54177. [Google Scholar]
  • Jaubert J.N., Arras L., Neau E., Avaullée L. (1998) Properly defining the classical vaporizing the condensing mechanisms when a gas is injected into a crude oil, Ind. Eng. Chem. Res. 37, 4860–4869. [Google Scholar]
  • Zhao G., Adidharma H., Towler B., Radosz M. (2006) Using a multiple-mixing-cell model to study minimum miscibility pressure controlled by thermodynamic equilibrium tie lines, Ind. Eng. Chem. Res. 45, 23, 7913–7923. [Google Scholar]
  • Yang F., Yu P., Zhang X. (2020) Multiple-mixing-cell model for calculation of minimum miscibility pressure controlled by tie-line length, Geofluids, 2020, 1–8. [Google Scholar]
  • Teklu T.W., Alharthy N., Kazemi H., Yin X., Graves R.M. (2014) Vanishing interfacial tension algorithm for MMP determination in unconventional reservoirs, in: SPE Western North American and Rocky Mountain Joint Regional Meeting, Denver, Colorado, USA, April 17–18, 2014, Society of Petroleum Engineers. [Google Scholar]
  • Zarragoicoechea G., Kuz V. (2004) Critical shift of a confined fluid in a nanopore, Fluid Phase Equilib. 220, 1, 7–9. [Google Scholar]
  • Gross J., Sadowski G. (2002) Application of the perturbed-chain SAFT equation of state to associating systems, Ind. Eng. Chem. Res. 41, 22, 5510–5515. [Google Scholar]
  • Peng D., Robinson D. (1976) A new two-constant equation of state, Ind. Eng. Chem. Fundam. 15, 1, 59–64. [Google Scholar]
  • Abudour A., Mohammad S., Robinson R., Gasem K. (2013) Volume-translated Peng-Robinson equation of state for liquid densities of diverse binary mixtures, Fluid Phase Equilib. 349, 37–55. [Google Scholar]
  • Tan S., Qiu X., Dejam M., Adidharma H. (2019) Critical point of fluid confined in nanopores: Experimental detection and measurement, J. Phys. Chem. C 123, 15, 9824–9830. [Google Scholar]
  • Whitson C., Brulé M. (2000) Phase behavior, Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers, Richardson, Texas. [Google Scholar]
  • Young T. (1805) An essay on the cohesion of fluids, Philos. Trans. R. Soc. Lond. 95, 65–87. [Google Scholar]
  • Qiu X., Tan S., Dejam M., Adidharma H. (2019) Experimental study on the criticality of a methane/ethane mixture confined in nanoporous media, Langmuir 35, 36, 11635–11642. [Google Scholar]
  • Rachford H., Rice J. (1952) Procedure for use of electronic digital computers in calculating flash vaporization hydrocarbon equilibrium, J. Pet. Tech. 4, 19-3. [Google Scholar]
  • Quayle O.R. (1953) The parachors of organic compounds. An interpretation and catalogue, Chem. Rev. 53, 3, 439–589. [Google Scholar]
  • Zhang K., Gu Y. (2015) Two different technical criteria for determining the Minimum Miscibility Pressures (MMPs) from the slim-tube and coreflood tests, Fuel 161, 146–156. [Google Scholar]
  • Sun H., Li H. (2021) Minimum miscibility pressure determination in confined nanopores considering pore size distribution of tight/shale formations, Fuel 286, 119450. [Google Scholar]
  • Wilson G.M. (1969) A modified Redlich-Kwong equation of state, application to general physical data calculations, in: 65th National AIChE Meeting, Cleveland, May 4–7, 1969. [Google Scholar]
  • Yuan H., Johns R. (2005) Simplified method for calculation of minimum miscibility pressure or enrichment, SPE J. 10, 04, 416–425. [Google Scholar]
  • Zick A.A. (1986) A combined condensing/vaporizing mechanism in the displacement of oil by enriched gases, in: SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, October 5–8, 1986, Society of Petroleum Engineers. [Google Scholar]
  • Jin L., Pekot L.J., Hawthorne S.B., Gobran B., Greeves A., Bosshart N.W., Jiang T., Hamling J.A., Gorecki C.D. (2016) Impact of CO2 impurity on MMP and oil recovery performance of the bell creek oil field, Energy Procedia 114, 6997–7008. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.