Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Numéro d'article 30
Nombre de pages 8
DOI https://doi.org/10.2516/ogst/2021007
Publié en ligne 30 avril 2021
  • Azizkhani A., Gandomkar A. (2020) A novel method for application of nanoparticles as direct asphaltene inhibitors during miscible CO2 injection, J. Petrol. Sci. Eng. 185, 106661. https://doi.org/10.1016/j.petrol.2019.106661. [Google Scholar]
  • Mogensen K. (2016) A novel protocol for estimation of minimum miscibility pressure from slimtube experiments, J. Petrol. Sci. Eng. 146, 545–551. https://doi.org/10.1016/j.petrol.2016.07.013. [Google Scholar]
  • Oschatz M., Antonietti M. (2018) A search for selectivity to enable CO2 capture with porous adsorbents, Energy Environ. Sci. 11, 57–70. [Google Scholar]
  • Zhou N., Khanna N., Feng W. (2018) Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050, Nat. Energy 3, 978–984. [Google Scholar]
  • Kolster C., Masnadi M.S., Krevor S., Dowell N.M., Brandt A.R. (2017) CO2 enhanced oil recovery: A catalyst for gigatonne-scale carbon capture and storage deployment? Energy Environ. Sci. 10, 2594–2608. [Google Scholar]
  • Jalilov A.S., Li Y., Kittrell C. (2017) Increased CO2 selectivity of asphalt-derived porous carbon through introduction of water into pore space, Nat. Energy 2, 932–938. [Google Scholar]
  • Chen G.Y., Gao H.X., Fu K.Y., Zhang H.Y., Liang Zh.W., Tontiwachwuthikul A. (2020) An improved correlation to determine minimum miscibility pressure of CO2–oil system, Green Energy Environ. 5, 97–104. [Google Scholar]
  • Xing W., Liu Ch., Zhou Z.Y., Zhang L., Zhou J., Zhuo Sh.P., Yan Z.F., Gao H., Wang G.Q., Qiao Sh.Zh. (2012) Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction, Energy Environ. Sci. 5, 7323–7327. [Google Scholar]
  • Birdja Y.Y., Pérez-Gallent E., Figueiredo M.C. (2019) Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels, Nat. Energy 4, 732–745. [Google Scholar]
  • Ahmadi M.A., Zendehboudi S., James L.A. (2017) A reliable strategy to calculate minimum miscibility pressure of CO2-oil system in miscible gas flooding processes, Fuel 208, 117–126. [Google Scholar]
  • Zhang A.G., Fan Z.F., Zhao L. (2020) An investigation on phase behaviors and displacement mechanisms of gas injection in gas condensate reservoir, Fuel 268, 117373. https://doi.org/10.1016/j.fuel.2020.117373. [Google Scholar]
  • Mutailipu M., Jiang L.L., Liu X.J., Liu Y., Zhao J.F. (2019) CO2 and alkane minimum miscible pressure estimation by the extrapolation of interfacial tension, Fluid Phase Equilibr. 494, 103–114. [Google Scholar]
  • Gong H.J., Qin X.J., Shang Sh.X., Zhu Ch.F., Xu L., San Q., Li Y.J., Dong M.Zh. (2020) Enhanced shale oil recovery by the Huff and Puff Method using CO2 and cosolvent mixed fluids, Energy Fuels 34, 1438–1446. [Google Scholar]
  • Ghorbani M., Gandomkar A., Montazeri G. (2019) Describing a strategy to estimate the CO2-heavy oil minimum miscibility pressure based on the experimental methods, Energ. Source. Part A 41, 17, 2083–2093. [Google Scholar]
  • Yu H.Y., Lu X., Fu W.R., Wang Y.Q., Xu H., Xie Q.Ch., Qu X.F., Lu J. (2020) Determination of minimum near miscible pressure region during CO2 and associated gas injection for tight oil reservoir in Ordos Basin, China, Fuel 263, 116737. https://doi.org/10.1016/j.fuel.2019.116737. [Google Scholar]
  • Wu Sh.Y., Li Zh.M., Sarma H.K. (2020) Influence of confinement effect on recovery mechanisms of CO2–enhanced tight-oil recovery process considering critical properties shift, capillarity and adsorption, Fuel 262, 116569. https://doi.org/10.1016/j.fuel.2019.116569. [Google Scholar]
  • Shao Y., Luo Ch., Deng B.W., Yin B., Yang M.B. (2020) Flexible porous silicone rubber-nanofiber nanocomposites generated by supercritical carbon dioxide foaming for harvesting mechanical energy, Nano Energy 67, 104290. https://doi.org/10.1016/j.nanoen.2019.104290. [Google Scholar]
  • Koornneef J., Ramírez A., Turkenburg W., Faaij A. (2012) The environmental impact and risk assessment of CO2 capture, transport and storage – An evaluation of the knowledge base, Progr. Energy Combust. Sci. 38, 62–86. [Google Scholar]
  • Kaufmann R.K., Connelly C. (2020) Oil price regimes and their role in price diversions from market fundamentals, Nat. Energy 5, 141–149. https://doi.org/10.1038/s41560-020-0549-1. [Google Scholar]
  • Zhang J., Zhang H.X., Ma L.Y., Liu Y., Zhang L. (2020) Performance evaluation and mechanism with different CO2 flooding modes in tight oil reservoir with fractures, J. Petrol. Sci. Eng. 188, 106950. https://doi.org/10.1016/j.petrol.2020.106950. [Google Scholar]
  • Yang Z.H., Wu W., Dong Zh.X., Lin M.Q., Zhang Sh.W., Zhang J. (2019) Reducing the minimum miscibility pressure of CO2 and crude oil using alcohols, Colloids Surf. A Physicochem. Eng. Aspects 568, 105–112. [Google Scholar]
  • Torabi F., Qazvini F.A., Kavousi A. (2012) Comparative evaluation of immiscible, near miscible and miscible CO2 huff-n-puff to enhance oil recovery from a single matrix-fracture system (experimental and simulation studies), Fuel 93, 4, 443–453. [Google Scholar]
  • Guo P., Hu Y.Sh., Qin J.Sh., Li Sh., Jiao S.J., Chen F., He J. (2017) Use of oil-soluble surfactant to reduce minimum miscibility pressure, Petrol. Sci. Technol. 35, 4, 345–350. [Google Scholar]
  • Ju B.Sh., Qin J.Sh., Li Zh.P. (2012) A prediction model for the minimum miscibility pressure of the CO2-crude oil system, Acta Petrolei Sinica 33, 2, 274–277. [Google Scholar]
  • Qin J.Sh., Han H.Sh., Liu X.L. (2015) Application and enlightenment of carbon dioxide flooding in the United States of America, Petrol. Explor. Dev. 42, 2, 209–216. [Google Scholar]
  • Hawthorne B.S., Miller D.J., Gorecki C.D. (2014) A rapid method for determining CO2/oil MMP and visual observations of CO2/oil interactions at reservoir conditions, Energy Proc. 63, 7724–7731. [Google Scholar]
  • Ma M., Liu K., Shen J., Kas R., Smith W.A. (2018) In Situ fabrication and reactivation of highly selective and stable Ag catalysts for electrochemical CO2 conversion, ACS Energy Lett. 3, 1301–1306. [Google Scholar]
  • Moghaddam A.K., Dehaghani A.H.S. (2017) Modeling of asphaltene precipitation in calculation of minimum miscibility pressure, Ind. Eng. Chem. Res. 56, 7375–7383. [Google Scholar]
  • Jaubert J.N., Avaullee L., Pierre C. (2002) Is it still necessary to measure the minimum miscibility pressure? Indus. Eng. Chem. Res. 41, 2, 303–310. [Google Scholar]
  • Avaullée L., Duchet-Suchaux P., Durandeau M., Jaubert J.N. (2001) A new approach in correlating the oil thermodynamic properties, J. Petrol. Sci. Eng. 30, 1, 43–65. [Google Scholar]
  • Wu Sh., He J., Li Z.Zh., Lin W.M., Wang Q.T., Wu F.Y., Zhao B., Zhang J.J. (2015) Studies on the chemical agent system for reducing in the minimal miscibility pressure of CO2 flooding, China Sciencepaper 10, 18, 2161–2164. [Google Scholar]
  • Jing L.Sh. (2014) Solubility of nonionic surfactants used in CO2 miscible flooding, Master Thesis, Dalian University of Technology. [Google Scholar]
  • Guo P., Jiao S.J., Chen F., He J., Li Y.Q., Zeng H. (2012) Optimization and oil displacement efficiency of non-ionic low molecular surfactant, Oil Drill. Prod. Technol. 34, 2, 81–84. [Google Scholar]
  • Zhang G.D., Liu J.Y., Liu Y.L., Zhou F. (2013) Study on reducing miscibility pressure in CO2 flooding by miscible solvent, Special Oil Gas Reserv. 20, 2, 115–117. [Google Scholar]
  • Peng Ch., Liu J.Y., Zhang G.D., Peng Y.J., Guo K. (2012) A new method of reducing the miscible-phase pressure of CO2 flooding, Journal of Chongqing University of Science and Technology (Natural Science edition) 14, 1, 48–51. [Google Scholar]
  • Harrison K., Goveas J., Johnston K.P., O’Rear E.A. (1994) Water-in-carbon dioxide microemulsions with a fluorocarbon-hydrocarbon hybrid surfactant, Langmuir 10, 10, 3536–3541. [Google Scholar]
  • Eastoe J., Gold S. (2005) Self-assembly in green solvents, Phys. Chem. Chem. Phys. 7, 7, 1352–1362. [Google Scholar]
  • Rocha S.R.P.D., Dickson J., Cho D., Rossky P.J., Johnston K.P. (2003) Stubby surfactants for stabilization of water and CO2 emulsions: trisiloxanes, Langmuir 19, 8, 3114–3120. [Google Scholar]
  • Fink R., Hancu D., Valentine R., Beckman E.J. (1999) Toward the development of “CO2-philic” hydrocarbons. 1. Use of side-chain functionalization to lower the miscibility pressure of polydimethylsiloxanes in CO2, J. Phys. Chem. B 103, 31, 6441–6444. [Google Scholar]
  • Zhang T.Y., Zhong L. (2005) Surfactants for supercritical CO2, Chem. Bull. 68, 8, 585–590. [Google Scholar]
  • Hoefling T., Stofesky D., Reid M., Beckman E., Enick R.M. (1992) The incorporation of a fluorinated ether functionality into a polymer or surfactant to enhance CO2-solubility, J. Supercrit. Fluids 5, 4, 237–241. [Google Scholar]
  • DeSimone J.M., Keiper J.S. (2001) Surfactants and self-assembly in carbon dioxide, Curr. Opin. Solid State Mater. Sci. 5, 4, 333–341. [Google Scholar]
  • Lou D.L., Xu B.Ch., Qiu T.Q. (2013, 1861) Comparison and dynamic models of supercritical CO2 extraction enhanced by different technologies, Modern Food Sci. Technol. 29, 8, 1921–1925. [Google Scholar]
  • Dong Zh.X., Cui B., Li Y., Lin M.Q., Li M.Y. (2013) MMP of supercritical carbon dioxide microemulsion and alkanes, J. Petrochem. Univ. 26, 1, 40–44. [Google Scholar]
  • Dong Zh.X., Li Y., Lin M.Q., Li M.Y. (2013) A study of the mechanism of enhancing oil recovery using supercritical carbon dioxide microemulsions, Petrol. Sci. 10, 1, 91–96. [Google Scholar]
  • Song Zh.J., Li Zh.P., Yu Ch.Sh. (2014) D-optimal design for rapid assessment model of CO2 flooding in high water cut oil reservoirs, J. Nat. Gas Sci. Eng. 21, 11, 764–771. [Google Scholar]
  • Han H.Sh., Li Sh., Chen X.L. (2016) Main control factors of carbon dioxide on swelling effect of crude hydrocarbon components, Acta Petrolei Sinica 37, 3, 392–398. [Google Scholar]
  • Yang Zh.M., Liu X.W., Zhang Zh.H. (2015) Physical simulation of staged-fracturing horizontal wells using CO2 huff and puff in tight oil reservoirs, Acta Petrolei Sinica 36, 6, 724–729. [Google Scholar]
  • Chen F., He J., Guo P. (2012) A method used for reducing the minimum miscible pressure between oil and CO2 in miscible flooding, Chinese Patent 102337874A 2. [Google Scholar]
  • Choubineh A., Mousavi S.R., Ayouri M.V., Ahmadinia M., Choubineh D., Baghban A. (2016) Estimation of the CO2-oil minimum miscibility pressure for enhanced oil recovery, Petrol. Sci. Technol. 34, 22, 1847–1854. [Google Scholar]
  • Li D., Li X.L., Zhang Y.H., Sun L.X., Yuan Sh.L. (2019) Four methods to estimate minimum miscibility pressure of CO2-oil based on machine learning, Chin. J. Chem. 37, 1271–1278. [Google Scholar]
  • Ebrahimi A., Khamehchi E. (2014) The use of optimization procedures to estimate minimum miscibility pressure, Petrol. Sci. Technol. 32, 8, 947–957. [Google Scholar]
  • Rahimi V., Bidarigh M., Bahrami P. (2017) Experimental study and performance investigation of miscible water-alternating-CO2 flooding for enhancing oil recovery in the Sarvak formation, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 35. https://doi.org/10.2516/ogst/2017030. [Google Scholar]
  • Luo E.H., Fan Z.F., Hu Y.L., Zhao L., Wang J.J. (2019) An evaluation on mechanisms of miscibility development in acid gas injection for volatile oil reservoirs, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 59. https://doi.org/10.2516/ogst/2019018. [Google Scholar]
  • Jaubert J.N., Borg P., Coniglio L., Barth D. (2001) Phase equilibria measurements and modeling of EPA and DHA ethyl esters in supercritical carbon dioxide, J. Supercrit. Fluids 20, 2, 145–155. https://doi.org/10.1016/S0896-8446(01)00062-6. [Google Scholar]
  • Jaubert J.N., Coniglio L., Denet F. (1999) From the Correlation of Binary Systems Involving Supercritical CO2 and Fatty Acid Esters to the Prediction of (CO2−Fish Oils) Phase Behavior, Indus. Eng. Chem. Res. 38, 8, 3162–3171. https://doi.org/10.1021/ie980783l. [Google Scholar]
  • Delforouz F.B., Movaghar M.R.K., Shariaty S. (2019) New empirical correlations for predicting Minimum Miscibility Pressure (MMP) during CO2 injection; implementing the Group Method of Data Handling (GMDH) algorithm and Pitzer’s acentric factor, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 64. https://doi.org/10.2516/ogst/2019035. [Google Scholar]
  • Abdurrahman M., Bae W., Permadi A.K. (2019) Determination and evaluation of minimum miscibility pressure using various methods: experimental, visual observation, and simulation, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 55. https://doi.org/10.2516/ogst/2019028 [Google Scholar]
  • Nichita D.V., Broseta D., Montel F. (2019) Application of near critical behavior of equilibrium ratios to phase equilibrium calculations, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 77. https://doi.org/10.2516/ogst/2019049. [Google Scholar]
  • Berneti S.M., Varaki M.A. (2018) Development of ε-insensitive smooth support vector regression for predicting minimum miscibility pressure in CO2 flooding, Songklanakarin J. Sci. Technol. 40, 1, 53–59. [Google Scholar]
  • Zhang A.G., Fan Z.F., Zhao L., Xu A.Zh. (2020) An evaluation on phase behaviors of gas condensate reservoir in cyclic gas injection, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 75, 4. https://doi.org/10.2516/ogst/2019070. [Google Scholar]
  • He C.G., Mu L.X., Xu A.Zh., Zhao L., He J., Zhang A.G., Shan F.Ch., Luo E.H. (2019) Phase behavior and miscible mechanism in the displacement of crude oil with associated sour gas, Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 74, 54. https://doi.org/10.2516/ogst/2019024. [Google Scholar]
  • Fathinasab M., Ayatollahi S., Taghikhani V., Shokouh S.P. (2018) Minimum miscibility pressure and interfacial tension measurements for N2 and CO2 gases in contact with W/O emulsions for different temperatures and pressures, Fuel 225, 623–631. https://doi.org/10.1016/j.fuel.2018.03.134. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.