Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Numéro d'article 32
Nombre de pages 13
DOI https://doi.org/10.2516/ogst/2021013
Publié en ligne 11 mai 2021
  • Al Hinai A., Rezaee R. (2015) Pore geometry in gas shale reservoirs, in: Fundamentals of gas shale reservoirs, Rezaee R. (ed), John Wiley & Sons Inc., pp. 89–116. [Google Scholar]
  • Al Hinai A., Rezaee R., Saeedi A., Lenormand R. (2013) Permeability prediction from mercury injection capillary pressure: An example from the Perth Basin, Western Australia, APPEA J. 53, 31–36. [Google Scholar]
  • Cao G., Lin M., Ji L., Jiang W., Yang M. (2019) Characterization of pore structures and gas transport characteristics of Longmaxi shale, Fuel 258, 116146. [Google Scholar]
  • Chen L., Zhang L., Kang Q., Viswanathan H.S., Yao J., Tao W. (2015) Nanoscale simulation of shale transport properties using the lattice Boltzmann method: Permeability and diffusivity, Sci. Rep. 5, 8089. [PubMed] [Google Scholar]
  • Firincioglu T., Blunt M.J., Zhou D. (1999) Three-phase and wettability effects in triangular capillaries, Colloids Surf. 155, 259–276. [Google Scholar]
  • Gregg S.J., Sing K.S.W. (1982) Adsorption, surface area and porosity, Academic Press, London. [Google Scholar]
  • Hill D.G., Nelson C.R. (2000) Gas productive fractured shales: An overview and update, Gas TIPS 6, 3, 4–13. [Google Scholar]
  • Hunt A.G. (2001) Applications of percolation theory to porous media with distributed local conductances, Adv. Water Resour. 24, 279–307. [Google Scholar]
  • Javadpour F., Fisher D., Unsworth M. (2007) Nanoscale gas flow in shale gas sediments, J. Can. Pet. Technol. 46, 10, 55–61. [Google Scholar]
  • Jones K.L., Laudone G.M., Matthews G.P. (2018) A multi-technique experimental and modeling study of the porous structure of IG-110 and IG-430 nuclear graphite, Carbon 128, 1–11. [Google Scholar]
  • Katz A.J., Thompson A.H. (1986) Quantitative prediction of permeability in porous rock, Phys. Rev. B 34, 8179–8181. [Google Scholar]
  • Song W., Wang D., Yao J., Li Y., Sun H., Yang Y., Zhang L. (2019) Multiscale image-based fractal characteristic of shale pore structure with implication to accurate prediction of gas permeability, Fuel 241, 522–532. [Google Scholar]
  • Stewart W.E., Caracotsios M. (2008) Computer-aided modeling of reactive systems, John Wiley & Sons, Hoboken, NJ. [Google Scholar]
  • Sun H., Yao J., Cao Y.-C., Fan D.-Y., Zhang L. (2017) Characterization of gas transport behaviors in shale gas and tight gas reservoirs by digital rock analysis, Int. J. Heat Mass Transfer 104, 227–239. [CrossRef] [Google Scholar]
  • Tsakiroglou C.D. (2014) Computation of the two-phase flow properties of intermediate-wet porous media: A pore network approach, Can. J. Chem. Eng. 92, 515–523. [Google Scholar]
  • Tsakiroglou C.D., Payatakes A.C. (1993) Pore-wall roughness as a fractal surface and theoretical simulation of mercury intrusion/retraction in porous media, J. Colloid Interface Sci. 159, 287–301. [Google Scholar]
  • Tsakiroglou C.D., Ioannidis Μ.Α. (2008) Dual porosity modeling of the pore structure and transport properties of a contaminated soil, Eur. J. Soil Sci. 59, 744–761. [Google Scholar]
  • Tsakiroglou C.D., Burganos V.N., Jacobsen J. (2004) Pore structure analysis by using nitrogen sorption and mercury intrusion data, AIChE J. 50, 489–510. [Google Scholar]
  • Tsakiroglou C.D., Ioannidis M.A., Amirtharaj E., Vizika O. (2009) A new approach for the characterization of the pore structure of dual porosity rocks, Chem. Eng. Sci. 64, 847–859. [Google Scholar]
  • Valvante P.H., Piri M., Lopez X., Blunt M.J. (2005) Predictive pore-scale modeling of single and multiphase flow, Transp. Porous Media 58, 23–41. [Google Scholar]
  • Zhang P., Hu L., Meegoda J.N. (2017) Pore-scale simulation and sensitivity analysis of apparent gas permeability in shale matrix, Materials 10, 104, 1–13. [CrossRef] [Google Scholar]
  • Zhang P., Lu S., Li J. (2019) Characterization of pore size distributions of shale oil reservoirs: A case study from Dongying sag, Bohai Bay basin, China, Mar. Petrol. Geol. 100, 297–308. [Google Scholar]
  • Zheng J., Wang Z., Gong W., Ju Y., Wang M. (2017) Characterization of nanopore morphology of shale and its effects on gas permeability, J. Nat. Gas Sci. Eng. 47, 83–90. [Google Scholar]
  • Zheng D., Wang W., Reza Z. (2019) Pore-network extraction algorithm for shale accounting for geometry-effect, J. Pet. Sci. Eng. 176, 74–84. [Google Scholar]
  • Zhou D., Blunt M., Orr F.M. (1997) Hydrocarbon drainage along corners of noncircular capillaries, J. Colloids Interface Sci. 187, 11–21. [Google Scholar]
  • Ziarani A.S., Aguilera R. (2012) Knudsen’s permeability correction for tight porous media, Transp. Porous Media 91, 239–260. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.