Regular Article
A methodology to predict the gas permeability parameters of tight reservoirs from nitrogen sorption isotherms and mercury porosimetry curves
1
Foundation for Research and Technology Hellas – Institute of Chemical Engineering Sciences, Stadiou Str., Platani, 26504 Patras, Greece
2
Department of Petroleum Engineering, Curtin University, WA 6151, Australia
* Corresponding author: ctsakir@iceht.forth.gr
Received:
25
March
2020
Accepted:
16
March
2021
A methodology is suggested for the explicit computation of the absolute permeability and Knudsen diffusion coefficient of tight rocks (shales) from pore structure properties. The pore space is regarded as a pore-and-throat network quantified by the statistical moments of bimodal pore and throat size distributions, pore shape factors, and pore accessibility function. With the aid of percolation theory, analytic equations are developed to express the nitrogen (N2) adsorption/desorption isotherms and mercury (Hg) intrusion curve as functions of all pertinent pore structure parameters. A multistep procedure is adopted for the successive estimation of each set of parameters by the inverse modeling of N2 adsorption–desorption isotherms, and Hg intrusion curve. With the aid of critical path analysis of percolation theory, the absolute permeability and Knudsen diffusion coefficient are computed as functions of estimated pore network properties. Application of the methodology to the datasets of several shale samples enables us to evaluate the predictability of the approach.
© C.D. Tsakiroglou et al., published by IFP Energies nouvelles, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.