Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Numéro d'article 83
Nombre de pages 10
Publié en ligne 24 novembre 2020
  • Bukuaghangin O., Sanni O., Kapur N., Huggan M., Neville A., Charpentier T. (2016) Kinetics study of barium sulphate surface scaling and inhibition with a once-through flow system, J. Petro. Sci. Eng. 147, 699–706. [CrossRef] [Google Scholar]
  • Chong T.H., Sheikholeslami R. (2001) Thermodynamics and kinetics for mixed calcium carbonate and calcium sulfate precipitation, Chem. Eng. Sci. 56, 5391–5400. [CrossRef] [Google Scholar]
  • Fink J. (2011) Petroleum engineer’s guide to oil field chemicals and fluids, Gulf Professional Publishing. [Google Scholar]
  • Frenier W.W., Ziauddin M. (2008) Formation, removal, and inhibition of inorganic scale in the oilfield environment, Society of Petroleum Engineers. [Google Scholar]
  • Gao S., House W., Chapman W.G. (2006) Detecting gas Hydrate behavior in crude oil using NMR, J. Phys. Chem. B 110, 6549–6552. [CrossRef] [PubMed] [Google Scholar]
  • Ghaderi S.M., Kharrat R., Tahmasebi H.A. (2009) Experimental and theoretical study of calcium sulphate precipitation in porous media using glass micromodel, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 64, 4, 489–501. [CrossRef] [Google Scholar]
  • Given R.K., Wilkinson B.H. (1985) Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates, J. Sediment Res. 55, 109–119. [Google Scholar]
  • Gudmundsson J.S. (2017) Flow assurance solids in oil and gas production, CRC Press. [CrossRef] [Google Scholar]
  • Islam M.M., Pojtanabuntoeng T., Gubner R. (2018) Corrosion of carbon steel under condensing water and monoethylene glycol, Corros. Sci. 143, 10–22. [CrossRef] [Google Scholar]
  • Jordan M.M., Sorhaug E., Marlow D. (2012) Red vs. green scale inhibitors for extending squeeze life – A case study from the North Sea, Norwegian sector – Part II, SPE Prod. Oper. 27, 404–413. [Google Scholar]
  • Kan A.T., Dai J., Deng D., Harouaka K., Lu Y.-T., Wang X., Zhao Y., Tomson M.B. (2019) Recent advances in scale prediction: Approach and limitations, SPE J. 24, 2209–2220. [CrossRef] [Google Scholar]
  • Kan A.T., Tomson M.B. (2012) Scale prediction for oil and gas production, SPE J. 17, 362–378. [CrossRef] [Google Scholar]
  • Lecerf B., Flamant N., Ziauddin M., Frenier W. (2005) A method for assessing the impact of secondary and tertiary reactions on sandstone acidizing treatments, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 60, 2, 319–337. [CrossRef] [Google Scholar]
  • Lei C., Peng Z., Day T., Yan X., Bai X., Yuan C. (2011) Experimental observation of surface morphology effect on crystallization fouling in plate heat exchangers, Int. Commun. Heat Mass. 38, 25–30. [CrossRef] [Google Scholar]
  • Lorens R.B. (1981) Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate, Geochim. Cosmochim. Acta. 45, 553–561. [CrossRef] [Google Scholar]
  • Mackay E. (2003) Predicting in situ sulphate scale deposition and the impact on produced ion concentrations, Chem. Eng. Res. Des. 81, 326–332. [Google Scholar]
  • Mackay E.J., Jordan M.M., Feasey N.D., Shah D.J., Kumar P.S., Ali S.A. (2005) Integrated risk analysis for scale management in deepwater developments, SPE Prod. Fac. 20, 138–154. [CrossRef] [Google Scholar]
  • Mavromatis V., Goetschl K.E., Grengg C., Konrad F., Purgstaller B., Dietzel M. (2018) Barium partitioning in calcite and aragonite as a function of growth rate, Geochim. Cosmochim. Acta. 237, 65–78. [CrossRef] [Google Scholar]
  • Moghadasi R., Rostami A., Hemmati-Sarapardeh A., Motie M. (2019a) Application of Nanosilica for inhibition of fines migration during low salinity water injection: Experimental study, mechanistic understanding, and model development, Fuel 242, 846–862. [CrossRef] [Google Scholar]
  • Moghadasi R., Rostami A., Tatar A., Hemmati-Sarapardeh A. (2019b) An experimental study of Nanosilica application in reducing calcium sulfate scale at high temperatures during high and low salinity water injection, J. Petrol. Sci. Eng. 179, 7–18. [CrossRef] [Google Scholar]
  • Mullin J.W. (2001) Crystallization, 4th edn., Butterworth-Heinemann, Woburn. [Google Scholar]
  • Neff J., Sauer T.C. (1995) Barium in produced water: Fate and effects in the marine environment, American Petroleum Institute Publication 4633. [Google Scholar]
  • Pingitore N.E. (1987) Modes of co-precipitation of Ba2+ and Sr2+ with calcite, in: J.A. Davis, K.F. Hayes (eds), Geochemical processes at mineral surfaces, American Chemical Society, pp. 574–586. [CrossRef] [Google Scholar]
  • Pitzer K.S. (1991) Activity coefficients in electrolyte solutions, 2nd edn., CRC Press. [Google Scholar]
  • Reeder R.J., Lamble G.M., Northrup P. (1999) XAFS study of the coordination and local relaxation around Co2+, Zn2+, Pb2+, and Ba2+ trace elements in calcite, Am. Mineral 84, 1049–1060. [CrossRef] [Google Scholar]
  • Rostami A., Shokrollahi A., Shahbazi K., Ghazanfari M.H. (2019) Application of a new approach for modeling the oil field formation damage due to mineral scaling, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 74, 62, 1–10. [Google Scholar]
  • Safari H., Jamialahmadi M. (2014) Thermodynamics, kinetics, and hydrodynamics of mixed salt precipitation in porous media: Model development and parameter estimation, Transport Porous Med. 101, 477–505. [CrossRef] [Google Scholar]
  • Saleh M.M., Mahmoud M.G., El-Lateef H.M.A. (2019) Comparative study of synergistic inhibition of mild steel and pure iron by 1-hexadecylpyridinium chloride and bromide ions, Corros. Sci. 154, 70–79. [CrossRef] [Google Scholar]
  • Sanni O., Bukuaghangin O., Huggan M., Kapur N., Charpentier T., Neville A. (2017) Development of a novel once-through flow visualization technique for kinetic study of bulk and surface scaling, Rev. Sci. Instrum. 88, 103903. [CrossRef] [Google Scholar]
  • Stumm W., Morgan J.J. (1996) Aquatic chemistry, Wiley-Interscience. [Google Scholar]
  • Tesoriero A.J., Pankow J.F. (1996) Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite, Geochim. Cosmochim. Acta. 66, 1053–1063. [CrossRef] [Google Scholar]
  • Vazquez O., Fursov I., Mackay E. (2016) Automatic optimization of oilfield scale inhibitor squeeze treatment designs, J. Petro. Sci. Eng. 147, 302–307. [CrossRef] [Google Scholar]
  • Wang Y., Xu H. (2001) Prediction of trace metal partitioning between minerals and aqueous solutions: a linear free energy correlation approach, Geochim. Cosmochim. Acta. 65, 1529–1543. [CrossRef] [Google Scholar]
  • Wang Z., Zhao Y., Zhang J., Pan S., Yu J., Sun B. (2018) Flow assurance during deepwater gas well testing: Hydrate blockage prediction and prevention, J. Petro. Sci. Eng. 163, 211–216. [CrossRef] [Google Scholar]
  • Yoshida Y., Yoshikawa H., Nakanishi T. (2008) Partition coefficients of Ra and Ba in calcite, Geochem. J. 42, 295–304. [CrossRef] [Google Scholar]
  • Yuan M. (2010) Latest developments in oilfield scale control, in: Amjad Z. (ed), The science and technology of industrial water treatment, CRC Press, pp. 135–159. [Google Scholar]
  • Zarga Y., Boubaker H.B., Ghaffour N., Elfil H. (2013) Study of calcium carbonate and sulfate co-precipitation, Chem. Eng. Sci. 96, 33–41. [CrossRef] [Google Scholar]
  • Zhang P., Harris L., Demiroglu M., Gokool A. (2017) Production chemistry: Exposing hidden treasures or generating complications, OTC- 27666, in: Proceeding of Offshore Technology Conference, Houston, Texas. [Google Scholar]
  • Zhang P., Zhang N., Liu Y., Kan A.T., Tomson M.B. (2018a) Application of a novel tube reactor for investigation of calcium carbonate mineral scale deposition kinetics, Chem. Eng. Res. Des. 137, 113–124. [CrossRef] [Google Scholar]
  • Zhang Z., Zhang P., Li Z., Kan A.T., Tomson M.B. (2018b) Laboratory evaluation and mechanistic understanding of the impact of ferric species on oilfield scale inhibitor performance, Energy Fuels 32, 8348–8357. [CrossRef] [Google Scholar]
  • Zhang P., Zhang Z., Zhu J., Kan A.T., Tomson M.B. (2019) Experimental evaluation of common sulfate mineral scale coprecipitation kinetics in oilfield operating conditions, Energy Fuels 33, 6177–6186. [CrossRef] [Google Scholar]
  • Zuber A., Checoni R.F., Mathew R., Santos J.P.L., Tavares F.W., Castier M. (2013) Thermodynamic properties of 1:1 salt aqueous solutions with the electrolattice equation of state, Oil Gas Sci. Technology – Rev. IFP Energies nouvelles 68, 2, 255–270. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.