Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Numéro d'article 26
Nombre de pages 13
DOI https://doi.org/10.2516/ogst/2020014
Publié en ligne 1 mai 2020
  • Albinali A., Holy R., Sarak H., Ozkan E. (2016) Modeling of 1D anomalous diffusion in fractured nanoporous media, Oil Gas Sci. Technol.- Rev. IFP Energies nouvelles 71, 56. [CrossRef] [Google Scholar]
  • Angulo J.M., Ruiz-Medina M.D., Anh V.V., Grecksch W. (2000) Fractional diffusion and fractional heat equation, Adv. Appl. Probab. 32, 4, 1077–1099. [Google Scholar]
  • Barenblatt G.I., Zheltov YuP, Kochina I.N. (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech. 24, 5, 1286–1303. [CrossRef] [Google Scholar]
  • Bense V., Person M. (2006) Faults as conduit-barrier system to fluid flow in silicilastic sedimentary aquifers, Water Resour. Res. 42, W05421. doi: 10.1029/2005WR004480. [Google Scholar]
  • Bernard S., Delay F., Porel G. (2006) A new method of data inversion for the identification of fractal characteristics and homogenization scale from hydraulic pumping tests in fractured aquifers, J. Hydrol. 328, 3, 647–658. doi: 10.1016/j.jhydrol.2006.01.008. [CrossRef] [Google Scholar]
  • Bixel H.C., Larkin B.K., Van Poollen H.K. (1963) Effect of linear discontinuities on pressure build-up and drawdown behavior, J. Pet. Tech. 15, 8, 885–895. doi: 10.2118/611-PA. [CrossRef] [Google Scholar]
  • Caine J.S., Evans J.P., Forster C.B. (1996) Fault zone architecture and permeability structure, Geology 24, 11, 1025–1028. [Google Scholar]
  • Caputo M. (1967) Linear models of dissipation whose Q is almost Frequency Independent-II, Geophys. J. R. Astron. Soc. 13, 5, 529–539. [NASA ADS] [CrossRef] [Google Scholar]
  • Caputo M. (1999) Diffusion of fluids in porous media with memory, Geothermics 28, 1, 113–130. [Google Scholar]
  • Carslaw H.S., Jaeger J.C. (1959) Conduction of heat in solids, 2nd edn., Vol. 22, Clarendon Press, Oxford, pp. 319–326, 327–352. [Google Scholar]
  • Chang J., Yortsos Y.C. (1990) Pressure-transient analysis of fractal reservoirs, SPE Form. Eval. 5, 1, 31–39. [CrossRef] [Google Scholar]
  • Childs E.C. (1969) An Introduction to the Physical Basis of Soil Water Phenomena, John Wiley and Sons Ltd, London, pp. 153–178. [Google Scholar]
  • Cinco-Ley H., Samaniego-V. F., Kuchuk F. (1985) The pressure transient behavior for naturally fractured reservoirs with multiple block size. In: Paper SPE 14168 Presented at SPE Annual Technical Conference and Exhibition, 22–26 September, Las Vegas, Nevada. [Google Scholar]
  • Cooper H.H., Jacob C.E. (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history, Trans. AGU 27, 526–534. [CrossRef] [Google Scholar]
  • Cortis A., Knudby C. (2006) A continuous time random walk approach to transient flow in heterogeneous porous media, LBNL-59885, Water Resour. Res. 42, W10201. [Google Scholar]
  • Darcy H. (1856) Les Fontaines publiques de la ville de Dijon, Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau ; ouvrage terminé par un appendice relatif aux fournitures d’eau de plusieurs villes au filtrage des eaux et à la fabrication des tuyaux de fonte, de plomb, Victor Dalmont, Paris, pp. 590–594. [Google Scholar]
  • Dassas Y., Duby Y. (1995) Diffusion toward fractal interfaces, potentiostatic, galvanostatic, and linear sweep voltammetric techniques, J. Electrochem. Soc. 142, 12, 4175–4180. [Google Scholar]
  • de Swaan-O A. (1976) Analytical solutions for determining naturally fractured reservoir properties by Well testing, Soc. Pet. Eng. J. 16, 3, 117–122. doi: 10.2118/5346-PA. [CrossRef] [Google Scholar]
  • Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G. (1954) Tables of integral transforms, based, in part, on notes left by Harry Bateman and Compiled by the Staff of the Bateman Manuscript Project, vol. 1, McGraw-Hill, New York, 17. [Google Scholar]
  • Erdelyi A., Magnus W.F., Oberhettinger F., Tricomi F.G. (1955) Higher transcendental functions, vol. 3, McGraw-Hill, New York, pp. 206–227. [Google Scholar]
  • Evans J.P. (1988) Deformation mechanisms in granitic rocks at shallow crustal levels, J. Struct. Geol. 10, 5, 437–443. [Google Scholar]
  • Feller W. (1971) An introduction to probability theory and its applications. II, 2nd edn., Wiley, New York, pp. 8–10, 50. [Google Scholar]
  • Fomin S., Chugunov V., Hashida T. (2011) Mathematical modeling of anomalous diffusion in porous media, Fractional Differ. Calc. 1, 1–28. [Google Scholar]
  • Fu L., Milliken K.L., Sharp J.M. Jr. (1994) Porosity and permeability variations in fractured and liesegang-banded Breathitt sandstones (Middle Pennsylvanian), eastern Kentucky: Diagenetic controls and implications for modeling dual-porosity systems, J. Hydrol. 154, 1–4, 351–381. [CrossRef] [Google Scholar]
  • Gefen Y., Aharony A., Alexander S. (1983) Anomalous diffusion on percolating clusters, Phys. Rev. Lett. 50, 1, 77–80. doi: 10.1103/PhysRevLett.50.77. [Google Scholar]
  • Gradshteyn I.S., Ryzhik I.M. (1994) Table of integrals, series and products, 5th edn., Vol. 532, Academic Press Inc., Orlando, pp. 3.961–3.962. [Google Scholar]
  • Grebenkov D.B. (2010) Subdiffusion in a bounded domain with a partially absorbing-reflecting boundary, Phys. Rev. E: Stat. Phys. Plasmas Fluids 81, 1, 021128. [CrossRef] [Google Scholar]
  • Gurtin M.E., Pipkin A.C. (1968) A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal. 31, 2, 113–126. doi: 10.1007/BF00281373. [CrossRef] [MathSciNet] [Google Scholar]
  • Hänninen J.J., Pirjola R.J., Lindell I.V. (2002) Application of the exact image theory to studies of ground effects of space weather, Geophys. J. Int. 151, 2, 534–542. [Google Scholar]
  • Henry B.I., Langlands T.A.M., Straka P. (2010) An introduction to fractional diffusion, in: Presented at the Conference: Complex Physical, Biophysical and Econophysical Systems – Proceedings of the 22nd Canberra International Physics Summer School, pp. 37–89. [Google Scholar]
  • Hilfer R., Anton L. (1995) Fractional master equations and fractal time random walks, Phys. Rev. E 51, 2, R848–R851. [Google Scholar]
  • Jourde H., Pistrea S., Perrochet P., Droguea C. (2002) Origin of fractional flow dimension to a partially penetrating well in stratified fractured reservoirs, new results based on the study of synthetic fracture networks, Adv. Water Res. 25, 4, 371–387. [CrossRef] [Google Scholar]
  • Kenkre V.M., Montroll E.W., Shlesinger M.F. (1973) Generalized master equations for continuous-time random walks, J Stat Phys 9, 1, 45–50. [Google Scholar]
  • Kim S., Kavvas M.L., Ercan A. (2015) Fractional ensemble average governing equations of transport by time-space nonstationary stochastic fractional advective velocity and fractional dispersion, II: Numerical investigation, J. Hydrol. Eng. 20, 2, 04014040. [Google Scholar]
  • Kosztoowicz K. (2017) Subdiffusion in a system consisting of two different media separated by a thin membrane, Int. J. Heat Mass Transfer 111, 1322–1333. [CrossRef] [Google Scholar]
  • Lẽ Mehautẽ A., Crepy G. (1983) Introduction to transfer and motion in fractal media: The geometry of kinetics, Solid State Ion. 1, 9–10, 17–30. [Google Scholar]
  • Lindell I., Alanen E. (1984) Exact image theory for the Sommerfeld half-space problem, part III: General formulation, IEEE Trans. Antennas Propag. 32, 10, 1027–1032. doi: 10.1109/TAP.1984.1143204. [Google Scholar]
  • Lindell I., Alanen E., von Bagh H. (1986) Exact image theory for the calculation of fields transmitted through a planar interface of two media, IEEE Trans. Antennas Propag. 34, 2, 29–137. doi: 10.1109/TAP.1986.1143788. [Google Scholar]
  • Lindquist E. (1933) On the flow of water through porous soil, 1st Congres des Grands Barrerges, Stockholm, 5, 91–101. [Google Scholar]
  • Magin R.L., Ingo C., Colon-Perez L., Triplett W., Mareci T.H. (2013) Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy, Microporous Mesoporous Mater. 178, 15, 39–43. doi: 10.1016/j.micromeso.2013.02.054. [CrossRef] [PubMed] [Google Scholar]
  • Mainardi F. (2010) Fractional calculus and waves in linear viscoelasticity, Imperial College Press, London, pp. 211–236. [Google Scholar]
  • Mainardi M., Pagnini G., Saxena R.K. (2005) Fox H functions in fractional diffusion, J. Comput. Appl. Math. 178, 1–2, 321–331. [Google Scholar]
  • Mandelis A., Nicolaides L., Chen Y. (2001) Structure and the reflectionless/refractionless nature of parabolic diffusion-wave fields, Phys. Rev. Lett. 87, 2, 020801. doi: 10.1103/PhysRevLett.87.020801. [Google Scholar]
  • Mathai A.M., Saxena R.K. (1978) The H-function with applications in statistics and other disciplines, Wiley, New Delhi, India, pp. 1–19. [Google Scholar]
  • Metzler R., Glockle W.G., Nonnenmacher T.F. (1994) Fractional model equation for anomalous diffusion, Physica A 211, 1, 13–24. [Google Scholar]
  • Miller B. (2005) The Baton Rouge Fault: Conduit or impediment to groundwater flow? in: Paper Presented at 54th Annual Meeting Southeast, Sect. Geol. Soc. Am., Biloxi Miss. [Google Scholar]
  • Miller F.G. (1954) Multiphase flow theory and the problem of spacing oil wells, United States Bureau of Mines 529, 8–10. [Google Scholar]
  • Mitchell T.M., Faulkner D.R. (2009) The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile, J. Struct. Geol. 31, 8, 802–816. doi: 10.1016/j.jsg.2009.05.002. [Google Scholar]
  • Molz F.J. III, Fix G.J. III, Lu S.S. (2002) A physical interpretation for the fractional derivative in Levy diffusion, Appl. Math. Lett. 15, 7, 907–911. [Google Scholar]
  • Montroll E.W., Weiss G.H. (1965) Random walks on lattices II, J. Math. Phys. 6, 167–181. [Google Scholar]
  • Moodie T.B., Tait R. (1983) On thermal transients with finite wave speeds, J. Acta Mech. 50, 1–2, 97–104. doi: 10.1007/BF01170443. [CrossRef] [Google Scholar]
  • Neville I.R., Sharp J.M. Jr., Kreisel I. (1998) Contaminant transport in sets of parallel finite fractures with fracture skins, J. Contam. Hydrol. 31, 1–2, 83–109. [Google Scholar]
  • Nigmatullin R. (1984a) On the theory of relaxation with “remnant” memory, Phys. Stat. Sol. B 124, 1, 389–393. doi: 10.1002/pssb.2221240142. [CrossRef] [Google Scholar]
  • Nigmatullin R.R. (1984b) To the theoretical explanation of the universal response, Phys. Status Solidi B Basic Res. 123, 2, 739–745. [CrossRef] [Google Scholar]
  • Noetinger B., Estebenet T. (2000) Up-scaling of double porosity fractured media using continuous-time random walks methods, Transp. Porous Med. 39, 3, 315–337. [CrossRef] [Google Scholar]
  • Norwood F.R. (1972) Transient thermal waves in the general theory of heat conduction with finite wave speeds, ASME J. Appl. Mech., 39, 3, 673–676. doi: 10.1115/1.3422771. [CrossRef] [Google Scholar]
  • Oberhettinger F., Badii L. (1973) Tables of Laplace transforms, Springer Verlag, Berlin, p. 268. [Google Scholar]
  • Odling N.E., Gillespie P., Bourgine B., Castaing C., Chiles J.P., Christiansen N.P., Fillion E., Albert G., Olsen C., Lena T., Trice R., Aarseth E.S., Walsh J.J., Watterson J. (1999) Variations in fracture system geometry and their implications for fluid flow in fractured hydrocarbon reservoirs, Petrol. Geosci. 5, 373–384. [CrossRef] [Google Scholar]
  • O’Shaughnessy B., Procaccia I. (1985a) Analytical solutions for diffusion on fractal objects, Phys. Rev. Lett. 54, 5, 455–458. [Google Scholar]
  • O’Shaughnessy B., Procaccia I. (1985b) Diffusion on fractals, Phys. Rev. A: At. Mol. Opt. Phys 32, 5, 3073–3083. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Philip J.R. (1957) Transient fluid motions in saturated porous media, Aust. J. Phys. 10, 43–53. [CrossRef] [Google Scholar]
  • Płociniczak Ł. (2015) Analytical studies of a time-fractional porous medium equation. Derivation, approximation and applications, Commun. Nonlinear Sci. Numer. Simul. 24, 1–3, 169–183. [Google Scholar]
  • Povstenko Y. (2015) Linear fractional diffusion-wave equation for scientists and engineers, Birkhäuser 24–30, 32, 34. [Google Scholar]
  • Povstenko Y.Z. (2013) Fractional heat conduction in infinite one-dimensional composite medium, J. Therm. Stresses 36, 4, 351–363. doi: 10.1080/01495739.2013.770693. [CrossRef] [Google Scholar]
  • Povstenko Y., Kyrylych T. (2019) Fractional heat conduction in solids connected by thin intermediate layer: Nonperfect thermal contact, Continuum Mech. Thermodyn. 31, 1719–1731, doi: 10.1007/s00161-019-00750-w. [CrossRef] [Google Scholar]
  • Prats M., Raghavan R. (2013) Finite horizontal well in a uniform-thickness reservoir crossing a natural fracture, SPE J. 18, 5, 982–992. doi: 10.2118/163098-PA. [CrossRef] [Google Scholar]
  • Prats M., Raghavan R. (2014) Properties of a natural fracture and its skins from reservoir well tests, SPE J. 19, 3, 390–397. doi: 10.2118/167262-PA. [CrossRef] [Google Scholar]
  • Raghavan R. (1993) Well test analysis, Prentice Hall, Englewoods Cliffs, NJ, pp. 6–8, 13. [Google Scholar]
  • Raghavan R. (2004) A review of applications to constrain pump-test responses to improve on geological description and uncertainty, Rev. Geophys. 42, 1–29. [Google Scholar]
  • Raghavan R. (2010) A composite system with a planar interface, J. Pet. Sci. Eng. 70, 3–4, 229–234. doi: 10.1016/j.petrol.2009.11.015. [Google Scholar]
  • Raghavan R. (2011) Fractional derivatives: Application to transient flow, J. Pet. Sci. Eng. 80, 1, 7–13. doi: 10.1016/j.petrol.2011.10.003. [Google Scholar]
  • Raghavan R. (2012) A horizontal well in a composite system with planar interfaces, Adv. Water Res. 38, 38–47. doi: 10.1016/j.advwatres.2011.12.009. [CrossRef] [Google Scholar]
  • Raghavan R., Chen C. (2017) Addressing the influence of a heterogeneous matrix on well performance in fractured rocks, Transp. Porous Med. 117, 1, 69–102. doi: 10.1007/s11242-017-0820-5. [CrossRef] [Google Scholar]
  • Raghavan R., Ozkan E. (1994) A method for computing unsteady flows in porous media, Pitman Research Notes in Mathematics Series (318), Longman Scientific & Technical, Harlow, UK, p. 188. [Google Scholar]
  • Raghavan R., Ozkan E. (2011) Flow in composite slabs. SPE Journal 16, 2, 374–387. doi: 10.2118/140748-PA. [CrossRef] [Google Scholar]
  • Raghavan R., Chen C. (2018) Time and space fractional diffusion in finite systems, Transp. Porous Med. 123, 173–193. [CrossRef] [Google Scholar]
  • Raghavan R., Chen C. (2019) The Theis solution for subdiffusive flow in rocks, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 6. doi: 10.2516/ogst/2018081. [CrossRef] [Google Scholar]
  • Raghavan R., Dixon T.N., Phan V.Q., Robinson S.W. (2001) Integration of geology, geophysics, and numerical simulation in the interpretation of a well test in a fluvial reservoir, SPE Reserv. Evalu. Eng. 4, 3, 201–208. doi: 10.2118/72097-PA. [CrossRef] [Google Scholar]
  • Savage H.M., Brodsky E.E. (2011) Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones, J. Geophys. Res. 116, B03405. doi: 10.1029/2010JB007665. [Google Scholar]
  • Saxena R.K., Mathai A.M., Haubold H.J. (2006) Fractional reaction-diffusion equations, Astrophys. Space Sci. 305, 3, 289–296. [Google Scholar]
  • Schneider W.R., Wyss W. (1989) Fractional diffusion and wave equations, J. Math. Phys. 30, 134. doi: 10.1063/1.528578. [Google Scholar]
  • Scholz C.H., Dawers N.H., Yu J.Z., Anders M.H., Cowie P.A. (1993) Fault growth and fault scaling laws: Preliminary results, J. Geophys. Res. 98, B12, 21951–21961. [Google Scholar]
  • Sharp J.M. Jr., Kreisel I., Milliken K.L., Mace R.E., Robinson N.I. (1996) Fracture skin properties and effects on solute transport: Geotechnical and environmental implications, in: M. Aubertin, F. Hassam, H. Mitri (eds), Rock Mechanics, Tools and Techniques, Balkema, Rotterdam, pp. 1329–1335. [Google Scholar]
  • Shendeleva M.L. (2004) Instantaneous line heat source near a plane interface, J. Appl. Phys. 95, 5, 2839–2845. [Google Scholar]
  • Sommerfeld A. (1909) Uber die Ausbreitung der Wellen in der drahtlosen Telegraphie, Ann. Phys. 28, 665–736. [Google Scholar]
  • Stehfest H. (1970a) Algorithm 368: Numerical inversion of Laplace transforms [D5], Commun. ACM 13, 1, 47–49. [Google Scholar]
  • Stehfest H. (1970b) Remark on algorithm 368: Numerical inversion of Laplace transforms, Commun. ACM 13, 10, 624. [Google Scholar]
  • Su N., Nelson P.N., Connor S. (2015) The distributed-order fractional diffusion-wave equation of groundwater flow: Theory and application to pumping and slug tests, J. Hydrol., 529, 1262–1273. doi: 10.1016/j.jhydrol.2015.09.033. [CrossRef] [Google Scholar]
  • Su N. (2014) Mass-time and space-time fractional partial differential equations of water movement in soils: Theoretical framework and application to infiltration, J. Hydrol. 519 (B), 1792–1803. doi: 10.1016/j.jhydrol.2014.09.021 [CrossRef] [Google Scholar]
  • Suzuki A.T., Hashida K.L., Horne R.N. (2016) Experimental tests of truncated diffusion in fault damage zones, Water Resour. Res. 52, 8578–8589. doi: 10.1002/2016WR019017. [Google Scholar]
  • Tao S., Gao X., Li C., Zeng J., Zhang X., Yang C., Zhang J., Gong Y. (2016) The experimental modeling of gas percolation mechanisms in a coal-measure tight sandstone reservoir: A case study on the coal-measure tight sandstone gas in the Upper Triassic Xu-Jiahe Formation, Sichuan Basin, China, J. Nat. Gas Geosci. 1, 6, 445–455. doi: 10.1016/j.jnggs.2016.11.009. [CrossRef] [Google Scholar]
  • Theis C.V. (1935) The relationship between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage, Eos Trans. AGU 2, 519–524. [CrossRef] [Google Scholar]
  • Tualle J.-M., Tinet E., Prat J., Avrillier S. (2000) Light propagation near turbid-turbid planar interfaces, Opt. Commun. 183, 5–6, 337–346. [Google Scholar]
  • Uchaikin V.V. (2013) Fractional derivatives for physicists and engineers. Volume I: Background and Theory, Springer, New York, 151, 296. [Google Scholar]
  • Yanga S., Zhoua H.W., Zhang S.Q., Ren W.G. (2019) A fractional derivative perspective on transient pulse test for determining the permeability of rocks, Int. J. Rock Mech. Min. Sci. 113, 92–98. [CrossRef] [Google Scholar]
  • Yaxley L.M. (1987) Effect of a partially communicating fault on transient pressure behavior, SPE Form. Eval. 2, 4, 590–598. doi: 10.2118/14311-PA. [CrossRef] [Google Scholar]
  • Zhokh A., Strizhak P. (2018) Non-Fickian transport in porous media: Always temporally anomalous? Transp. Porous Med. 124, 2, 309–323. doi: 10.1007/s11242-018-1066-6. [CrossRef] [Google Scholar]
  • Zhokh A., Strizhak P. (2019) Investigation of the anomalous diffusion in the porous media: A spatiotemporal scaling, Heat Mass Transfer. 55, 1–10. doi: 10.1007/s00231-019-02602-4. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.