Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Numéro d'article 86
Nombre de pages 20
DOI https://doi.org/10.2516/ogst/2019056
Publié en ligne 12 décembre 2019
  • Abdurrahman M., Permadi A.K., Bae W.S. (2015) An improved method of estimating minimum miscibility pressure through condensation-extraction process under swelling tests, J. Pet. Sci. Eng. 131, 165–171. [Google Scholar]
  • Abou-Sayed A.S., Zaki K., Summers C. (2004) Management of sour gas by underground injection – Assessment, challenges and recommendations. SPE-86605. [Google Scholar]
  • Abrishami Y., Hatamian H. (1996) Phase behaviour of fluids in multiple contact processes with CO2, N2 and their mixture. SPE-36295. [Google Scholar]
  • AlFalahy M.A., Abou-Kassem J.H., Chakma A., Islam M.R., Al-Ain U.A.E. (1998) Sour gas processing, disposal, and utilization as applied in UAE reservoirs. SPE-49504. [Google Scholar]
  • Al-Wahaibi Y.M., Muggeridge A.H., Grattoni C.A. (2007) Experimental and numerical studies of gas/oil multicontact miscible displacements in homogeneous and crossbedded porous media, SPE J. 12, 1, 62–76. [CrossRef] [Google Scholar]
  • Babadagli T. (2007) Development of mature oil fields – A review, J. Pet. Sci. Eng. 57, 3–4, 221–246. [Google Scholar]
  • Bachu S., Gunter W.D. (2005) Overview of acid-gas injection operations in western Canada, Greenh. Gas. Control. Technol. 1, 443–448. [CrossRef] [Google Scholar]
  • Bahralolom I.M., Orr F.M. Jr. (1988) Solubility and extraction in multiple-contact miscible displacements: Comparison of N2 and CO2 flow visualization experiments, SPE Reserv. Eng. 3, 1, 213–219. [CrossRef] [Google Scholar]
  • Battistelli A., Marcolini M. (2009) TMGAS: A new TOUGH2 EOS module for the numerical simulation of gas mixtures injection in geological structures, Int. J. Greenh. Gas. Control 3, 481–493. [CrossRef] [Google Scholar]
  • Behrend J., Chugh S., Mckishnie R.A. (2007) Development of the Strasshof Tief sour-gas field incluing acid-gas injection into adjacent producing sour-gas reservoirs, SPE Reserv. Eval. Eng. 10, 5, 572–579. [CrossRef] [Google Scholar]
  • Belhaj H., Abukhalifeh H., Javid K. (2013a) Miscible oil recovery utilizing N2 and/or HC gases in CO2 injection, J. Pet. Sci. Eng. 111, 144–152. [Google Scholar]
  • Belhaj H., Khalifeh H.A., Javid K. (2013b) Potential of nitrogen gas miscible injection in South East assets, Abu Dhabi. SPE-164774. [Google Scholar]
  • Chapoy A., Nazeri M., Kapateh M., Burgass R., Coquelet C., Tohidi B. (2013) Effect of impurities on thermophysical properties and phase behaviour of a CO2-rich system in CCS, Int. J. Greenh. Gas. Control 19, 92–100. [CrossRef] [Google Scholar]
  • Coats K.H., Thomas L.K., Pierson R.G. (2007) Simulation of miscible flow including bypassed oil and dispersion control, SPE Reserv. Eval. Eng. 10, 5, 500–507. [CrossRef] [Google Scholar]
  • Fandino O., Trusler J.P.M., Vega-Maza D. (2015) Phase behavior of (CO2 + H2) and (CO2 + N2) at temperatures between (218.15 and 303.15) K at pressures up to 15 MPa, Int. J. Greenh. Gas. Control 36, 78–92. [CrossRef] [Google Scholar]
  • Firoozabadi A., Aziz K. (1986) Analysis and correlation of nitrogen and lean-gas miscibility pressure, SPE Reserv. Eng. 1, 6, 575–582. [CrossRef] [Google Scholar]
  • Han H.S., Li S., Chen X.L., Qin J.S., Zeng B.Q. (2016) Main control factors of carbon dioxide on swelling effect of crude hydrocarbon components, Acta Petrol. Sin. 37, 3, 392–398. [Google Scholar]
  • Hand J.L., Pinczewskl W.V. (1990) Interpretation of swelling/extraction tests, SPE Reserv. Eng. 5, 4, 595–600. [CrossRef] [Google Scholar]
  • Harvey A.H., Henry R.L. (1960) A laboratory investigation of oil recovery by displacement with carbon dioxide and hydrogen sulfide. SPE-6983. [Google Scholar]
  • He C.G., Mu L.X., Xu A.Z., Zhao L., He J., Zhang A.G., Shan F.C., Luo E.H. (2019) Phase behavior and miscible mechanism in the displacement of crude oil with associated sour gas, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 54. [CrossRef] [Google Scholar]
  • Holm L.W., Josendal V.A. (1974) Mechanisms of oil displacement by carbon dioxide, J. Petrol. Technol. 26, 12, 1427–1438. [CrossRef] [Google Scholar]
  • Huang N.S., Aho G.E., Baker B.H., Matthews T.R., Pottorf R.J. (2011) Integrated reservoir modeling of a large sour-gas field with high concentrations of inerts, SPE Reserv. Eval. Eng. 14, 4, 418–432. [CrossRef] [Google Scholar]
  • Jaubert J.N., Avaullee L., Zaborowski G. (1995) Characterization of heavy oils. 3. Prediction of gas injection behavior: Sweeling test, multicontact test, multiple-contact minimum miscibility pressure, and multiple-contact minimum miscibility enrichment, Ind. Eng. Chem. Res. 34, 4016–4032. [Google Scholar]
  • Jaubert J.N., Privat R., Le Guennec Y., Coniglio L. (2016) Note on the properties altered by application of a Peneloux-type volume translation to an equation of state, Fluid Phase Equilib. 419, 88–95. [Google Scholar]
  • Jin L., Pekot L.J., Bhathorne S.B., Salako O., Peterson K.J., Bosshart N.W., Jiang T., Hamling J.A., Gorecki C.D. (2018) Evaluation of recycle gas injection on CO2 enhanced oil recovery and associated storage performance, Int. J. Greenh. Gas. Control 75, 151–161. [CrossRef] [Google Scholar]
  • Le Guennec Y., Lasala S., Privat R., Jaubert J.N. (2016a) A consistency test for α-functions of cubic equations of state, Fluid Phase Equilib. 427, 513–538. [Google Scholar]
  • Le Guennec Y., Privat R., Jaubert J.N. (2016b) Development of the translated-consistent tc-PR and tc-RK cubic equations of state for a safe and accurate prediction of volumetric, energetic and saturation properties of pure compounds in the sub- and super-critical domains, Fluid Phase Equilib. 429, 301–312. [Google Scholar]
  • Li H., Jakobsen J.P., Wilhelmsen O., Yan J. (2011) PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: Review of available experimental data and theorecical models, Appl. Energy 88, 3567–3579. [Google Scholar]
  • Li H., Yan J. (2009) Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes, Appl. Energy 86, 2730–2770. [Google Scholar]
  • Longworth H.L., Dunn G.C., Semchuck M. (1996) Underground disposal of acid gas in Alberta, Canada: Regulatory concerns and case histories. SPE-35584. [Google Scholar]
  • Luo E.H., Fan Z.F., Hu Y.L., Zhao L., Zhao H.Y., Wang J.J., He C.G., Zeng X. (2019a) A dual-porosity dual-permeability model for acid gas injection process evaluation in hydrogen-carbonate reservoir, Int. J. Hydrogen. Energy 44, 25169–25179. [Google Scholar]
  • Luo E.H., Fan Z.F., Hu Y.L., Zhao L., Wang J.J. (2019b) An evaluation on mechanisms of miscibility development in acid gas injection for volatile oil reservoirs, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 59. [CrossRef] [Google Scholar]
  • Luo E.H., Hu Y.L., Li B.Z., Zhu W.P. (2013a) Practices of CO2 EOR in China, Special Oil Gas Reserv. 20, 2, 1–7. (in Chinese). [Google Scholar]
  • Luo E.H., Hu Y.L., Li B.Z., Wang J.L., Wang Z.B. (2013b) Methods of improving sweep volume by mobility control of CO2 flood in foreign countries, Oilfield Chem. 30, 4, 613–619. (in Chinese). [Google Scholar]
  • Luo P., Er V., Freitag N., Huang S. (2013c) Recharacterizing evolving fluid and PVT properties of Weyburn oil-CO2 system, Int. J. Greenh. Gas. Control 16S, S226–S235. [CrossRef] [Google Scholar]
  • McGuire P.L., Okuno R., Gould T.L., Lake L.W. (2017) Ethane-based enhanced oil recovery: An innovative and profitable enhanced-oil-recovery opportunity for a low-price environment, SPE Reserv. Eval. Eng. 20, 1, 42–58. [CrossRef] [Google Scholar]
  • Metcalfe R.S., Yarborough L. (1979) The effect of phase equilibria on the CO2 displacement mechanism, Soc. Pertrol. Eng. J. 19, 4, 242–252. [CrossRef] [Google Scholar]
  • Mohsen-Nia M., Moddaress H., Mansoori G.A. (1993) Sour natural gas and liquid equationo of state. SPE-26906. [Google Scholar]
  • Neau E., Jaubert J.N., Rogalski M. (1993) Characterization of heavy oils, Ind. Eng. Chem. Res. 32, 1196–1203. [Google Scholar]
  • Newley T.M.J., Merrill R.C. Jr (1991) Pseudocomponent selection for compositional simulation, SPE Reserv. Eng. 6, 4, 490–496. [CrossRef] [Google Scholar]
  • Nutakki R., Hamoodi A.N., Li Y.-K., Nghiem L.X. (1991) Experimental analysis, modelling, and interpretation of recovery mechanisms in enriched-gas processes. SPE-22634. [Google Scholar]
  • Onerhime A., Kveps A., Daher E. (2014) Addressing safety challenges of operating in sour gas fields: A case study from the Middle East. SPE-170393. [Google Scholar]
  • Privat R., Jaubert J.N., Le Guennec Y. (2016) Incorporation of a volume translation in an equation of state for fluid mixtures: Which combining rule? Which effect on properties of mixing? Fluid Phase Equilib. 427, 414–420. [Google Scholar]
  • Rahimi V., Bidarigh M., Bahrami P. (2017) Experimental study and performance investigation of miscible water-alternating-CO2 flooding for enhancing oil recovery in the Sarvak formation, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 35. [CrossRef] [Google Scholar]
  • Siddiqui M., Baber S., Saleem W.A., Jafri M.O., Hafeez Q. (2013) Industry practices of sour gas management by reinjection: Benefits, methodologies, economic evaluation and case studies. SPE-169645. [Google Scholar]
  • Simon R., Graue D.J. (1964) Generalized correlations for predicting solubility, swelling and viscosity behavior of CO2-crude oil systems, J. Petrol. Technol. 17, 1, 102–106. [CrossRef] [Google Scholar]
  • Spivey J.P., McCain W.D. (2013) Estimating reservoir composition for gas condensates and volatile oils from field data. SPE-166414. [Google Scholar]
  • Srivastava R.K., Huang S.S. (1997) Comparative effectiveness of CO2, produced gas, and flue and gas for enhanced heavy oil recovery. SPE-37558. [Google Scholar]
  • Stalkup F.I. (1987) Displacement behavior of the condensing/vaporizing gas drive process. SPE-16715. [Google Scholar]
  • Trivedi J.J., Babadagli T., Lavoie R.G., Nimchuk D. (2005) Acid gas sequenstration during teriary oil recovery: Optimal injection strategies and importance of operational parameters, J. Can. Petrol. Technol. 46, 3, 1–17. [Google Scholar]
  • Tsau J.S., Bui L.H., Willhite G.P. (2010) Swelling/extraction test of a small sample size for phase behavior study. SPE-129728. [Google Scholar]
  • Vark W.V., Masalmeh S.K., Dorp J.V., Nasr M.A.A., Al-Khanbashi S. (2004) Simulation study of miscible gas injection for enhanecd oil recovery in low permeable carbonate reservoirs in Abu Dhabi. SPE-88717. [Google Scholar]
  • Verlaan C., Zwet G. (2012) Challenges and opportunities in sour gas developments. SPE-162167. [Google Scholar]
  • Wang G.C. (1986) A study of crude oil composition during CO2 extraction process. SPE-15085. [Google Scholar]
  • Yang S.L., Hang D.Z., Sun R., Lv W.F., Wu M., Deng H. (2009) CO2 extraction for crude oil and its effect on crude oil viscosity, J. China Univ. Petrol. 33, 4, 85–88. [Google Scholar]
  • Ziabakhsh-Ganji Z., Kooi H. (2012) An equation of state for thermodynamic equilibrium of gas mixtures and brines to allow simulation of the effects of impurities in subsurface CO2 storage, Int. J. Greenh. Gas. Control 11S, S21–S34. [CrossRef] [Google Scholar]
  • Zick A.A. (1986) A combined condensing/vaporizing mechanism in the displacement of oil by enriched gases. SPE-15493. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.