Dossier LES4ICE’18 : LES for Internal Combustion Engine Flows Conference
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Dossier LES4ICE’18 : LES for Internal Combustion Engine Flows Conference
Numéro d'article 52
Nombre de pages 19
DOI https://doi.org/10.2516/ogst/2019022
Publié en ligne 28 mai 2019
  • Rutland C.J. (2011) Large-eddy simulations for internal combustion engines – A review, Int. J. Engine Res. 12, 4, 421–451. [CrossRef] [EDP Sciences] [Google Scholar]
  • Enaux B., Granet V., Vermorel O., Lacour C., Pera C., Angelberger C., Poinsot T. (2011) LES study of cycle-to-cycle variations in a spark ignition engine, Proc. Comb. Inst. 33, 2, 3115–3122. [CrossRef] [Google Scholar]
  • Van Dam N., Sjöberg M., Som S. (2018) Large-eddy simulations of spray variability effects on flow variability in a direct-injection spark-ignition engine under non-combusting operating conditions, SAE International, SAE Technical Paper No. 2018-01-0196. [Google Scholar]
  • Kuo T.-W., Yang X., Gopalakrishnan V., Chen Z. (2014) Large-Eddy Simulation (LES) for IC engine flows, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 69, 1, 61–81. [CrossRef] [Google Scholar]
  • Yang X., Kuo T.-W. (2017) Correlation of CCV between in-cylinder swirl ratio and polar velocity profile in valve seat region using LES under motored engine condition, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 38. [CrossRef] [Google Scholar]
  • Sick V., Reuss D., Rutland C., Haworth D., Oefelein J., Janicka J., Kuo T.-W., Yang X., Freitag M. (2010) A common engine platform for engine LES development and validation, LES4ICE Conference, 18–19 Nov, Rueil-Malmaison, France, . [Google Scholar]
  • David L.R., Zhong Z., Yang X., Kuo T.-W., Sick V. (2018) Measured and LES motored-flow kinetic energy evolution in the TCC-III engine, SAE International, SAE Technical Paper No. 2018-01-0192. [Google Scholar]
  • Nicollet F., Krüger C., Schorr J., Nicoud E., Colin O., Angelberger C., Bode J., Böhm B. (2017) A PIV-guided large-eddy simulation of in-cylinder flows, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 28. [CrossRef] [Google Scholar]
  • Chang Y., Wu A., Reuss D., Sick V. (2018) Scale similarity analysis of internal combustion engine flows – Particle image velocimetry and large-eddy simulations, SAE International, SAE Technical Paper No. 2018-01-0172. [Google Scholar]
  • Buhl S., Hartmann F., Kaiser S.A., Hasse C. (2017) Investigation of an IC engine intake flow based on highly resolved LES and PIV, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 15. [CrossRef] [Google Scholar]
  • Abraham P., Liu K., Haworth D., Reuss D., Sick V. (2014) Evaluating Large-Eddy Simulation (LES) and high-speed Particle Image Velocimetry (PIV) with phase-invariant Proper Orthogonal Decomposition (POD), Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 69, 1, 41–59. [CrossRef] [EDP Sciences] [Google Scholar]
  • Buhl S., Gleiss F., Köhler M., Hartmann F., Messig D., Brücker C., Hasse C. (2017) A combined numerical and experimental study of the 3D tumble structure and piston boundary layer development during the intake stroke of a gasoline engine, Flow Turbul. Combust. 98, 2, 579–600. [Google Scholar]
  • Janas P., Wlokas I., Bohm B., Kempf A. (2017) On the evolution of the flow field in a spark ignition engine, Flow Turbul. Combust. 98, 237–264. [Google Scholar]
  • Bode J., Schorr J., Krüger C., Dreizler A., Böhm B. (2016) Influence of three-dimensional in-cylinder flows on cycle-to-cycle variations in a fired stratified DISI engine measured by time-resolved dual-plane PIV, Proc. Combus. Inst. 36, 3, 3477–3485. [CrossRef] [Google Scholar]
  • Baum E., Peterson B., Surmann C., Michaelis D., Böhm B., Dreizler A. (2013) Investigation of the 3D flow field in an IC engine using tomographic PIV, Proc. Combus. Inst. 34, 2, 2903–2910. [CrossRef] [Google Scholar]
  • Schiffmann P., Gupta S., Reuss D., Sick V., Yang X., Kuo T.-W. (2016) TCC-III engine benchmark for large-eddy simulation of IC engine flows, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 71, 3. [CrossRef] [Google Scholar]
  • Bücker I., Karhoff D.C., Klaas M., Schröder W. (2012) Stereoscopic multi-planar PIV measurements of in-cylinder tumbling flow, Exp. Fluids 53, 6, 1993–2009. [Google Scholar]
  • Werner H., Wengle H. (1993) Large-eddy simulation of turbulent flow over and around a cube in a plate channel, Turbul. Shear Flows 8, 155–168. [CrossRef] [Google Scholar]
  • Senecal P.K., Richards K.J., Pomraning E., Yang T., Dai M.Z., McDavid R.M., Patterson M.A., Hou S., Shethaji T. (2007) A new parallel cut-cell cartesian CFD code for rapid grid generation applied to in-cylinder diesel engine simulations. SAE Technical Paper No. 2007-01-0159. [Google Scholar]
  • Pomraning E., Rutland C.J. (2002) A dynamic one-equation non-viscosity LES model, AIAA J. 40, 4, 689–701. [Google Scholar]
  • Zhao F., Ge P., Zhuang H., David L.S. (2017) Analysis of crank angle-resolved vortex characteristics under high swirl condition in a spark-ignition direct-injection engine, J. Eng. Gas Turb. Power 140, 9. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.