Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Numéro d'article 18
Nombre de pages 13
Publié en ligne 5 mars 2019
  • Cao S.L., Peng G.Y., Yu Z.Y. (2005) Hydrodynamic design of rotodynamic pump impeller for multiphase pumping by combined approach of inverse design and CFD analysis, J. Fluids Eng. 127, 330–338. [Google Scholar]
  • Caridad J., Kenyery F. (2004) CFD analysis of electric submersible pumps (ESP) handling two-phase mixtures, J. Energy Resour. 126, 99–104. [CrossRef] [Google Scholar]
  • Caridad J., Asuaje M., Kenyery F., Tremante A., Aguillon O. (2008) Characterization of a centrifugal pump impeller under two-phase flow conditions, J. Pet. Sci. Eng. 63, 18–22. [Google Scholar]
  • Chen E., et al. (2016) Numerical investigation on vibration and noise induced by unsteady flow in an axial-flow pump, J. Mech. Sci. Technol. 30, 5397–5404. [CrossRef] [Google Scholar]
  • Ding H., Visser F.C., Jiang Y., Furmanczyk M. (2011) Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applications, J. Fluids Eng. 133, 1–13. [Google Scholar]
  • Feng J.J., Benra F.K., Dohmen H.J. (2010) Application of different turbulence models in unsteady flow simulations of a radial diffuser pump, Forsch. Ingenieurwes. 74, 123–133. [CrossRef] [Google Scholar]
  • Feng J.J., Luo X., Guo P., Wu G. (2016) Influence of tip clearance on pressure fluctuations in an axial flow pump, J. Mech. Sci. Technol. 30, 1603–1610. [CrossRef] [Google Scholar]
  • Franke M. (2009) Aspects of numerical simulation of turbomachinery flowsEingeladener Vortrag am Institut für Technische und Angewandte Mechanik der TU Warschau, SAS IP Inc., Polen. [Google Scholar]
  • González J., Parrondo J., Santolaria C., Blanco E. (2006) Steady and unsteady radial forces for a centrifugal pump with impeller to tongue gap variation, J. Fluids Eng. 128, 454–462. [Google Scholar]
  • Hayashi I., Kaneko S. (2014) Pressure pulsations in piping system excited by a centrifugal turbomachinery taking the damping characteristics into consideration, J. Fluids Struct. 45, 216–234. [Google Scholar]
  • Kim J.H., et al. (2015) Improvement of hydrodynamic performance of a multiphase pump using design of experiment techniques, J. Fluids Eng. 137, 1–15. [Google Scholar]
  • Kocaaslan O., Ozgoren M., Babayigit O., Aksoy M.H. (2017) Numerical investigation of the effect of number of blades on centrifugal pump performance, American Institute of Physics Conference Series 1863, 1–4. [Google Scholar]
  • Konno A., Kato H., Yamaguchi H., Maeda M. (2001) On the collapsing behavior of cavitation bubble clusters, JSME Int. J. 45, 631–637. [CrossRef] [Google Scholar]
  • Lane G.L., Schwarz M.P., Evans G.M. (2005) Numerical modelling of gas-liquid flow in stirred tanks, Chem. Eng. Sci. 60, 2203–2214. [Google Scholar]
  • Liu X.B., Hu Q.Y., Shi G.T., Zeng Y.Z., Wang H.Y. (2017a) Research on transient dynamic characteristics of three-stage axial-flow multi-phase pumps influenced by gas volume fractions, Adv. Mech. Eng. 9, 1–10. [Google Scholar]
  • Liu Y., Tan L., Liu M., Hao Y., Xu Y. (2017b) Influence of prewhirl angle and axial distance on energy performance and pressure fluctuation for a centrifugal pump with inlet guide vanes, Energies 10, 1–14. [Google Scholar]
  • Ma Y., Ni Y., Zhang H., Zhou S., Deng H. (2018) Influence of valve’s lag characteristic on pressure pulsation and performance of reciprocating multiphase pump, J. Pet. Sci. Eng. 164, 584–594. [Google Scholar]
  • Majidi K. (2005) Numerical study of unsteady flow in a centrifugal pump, J. Turbomach. 127, 805–814. [Google Scholar]
  • Menter F.R. (1994) 2-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32, 1598–1605. [Google Scholar]
  • Minemura K., Murakami M. (1980) A theoretical-study on air bubble motion in a centrifugal pump impeller, J. Fluids Eng. 102, 446–455. [Google Scholar]
  • Minemura K., Uchiyama T. (1993) 3-dimensional calculation of air-water 2-phase flow in centrifugal pump impeller based on a bubbly flow model, J. Fluids Eng. 115, 766–771. [Google Scholar]
  • Miorini R.L., Wu H., Katz J. (2012) The internal structure of the tip leakage vortex within the rotor of an axial waterjet pump, J. Turbomach. 134, 403–419. [Google Scholar]
  • Miyabe M., Maeda H., Umeki I., Jittani Y. (2006) Unstable head-flow characteristic generation mechanism of a low specific speed mixed flow pump, J. Therm. Sci. 15, 115–120. [CrossRef] [Google Scholar]
  • Ni Y., Zhu R., Zhang X., Pan Z. (2018) Numerical investigation on radial impeller induced vortex rope in draft tube under partial load conditions, J. Mech. Sci. Technol. 32, 157–165. [CrossRef] [Google Scholar]
  • Nishida M., et al. (2016) Long-term durability test of axial-flow ventricular assist device under pulsatile flow, J. Artif. Organs 20, 1–8. [Google Scholar]
  • Pineda H., et al. (2016) Phase distribution analysis in an Electrical Submersible Pump (ESP) inlet handling water-air two-phase flow using Computational Fluid Dynamics (CFD), J. Pet. Sci. Eng. 139, 49–61. [Google Scholar]
  • Qu W.S., Tan L., Cao S.L., Wang Y.C., Xu Y. (2016) Numerical investigation of clocking effect on a centrifugal pump with inlet guide vanes, Eng. Comput. 33, 465–481. [Google Scholar]
  • SAS IP, Inc (2013) ANSYS TurboGrid Users Guide, Release 15.0, Pittsburgh, PA, USA. [Google Scholar]
  • Shuai Z.J., Li W.Y., Zhang X.Y., Jiang C.X., Li F.C. (2014) Numerical study on the characteristics of pressure fluctuations in an axial-Flow water pump, Adv. Mech. Eng. 2, 1–7. [Google Scholar]
  • Stel H., Sirino T., Ponce F.J., Chiva S., Morales R.E.M. (2015) Numerical investigation of the flow in a multistage electric submersible pump, J. Pet. Sci. Eng. 136, 41–54. [Google Scholar]
  • Suh J.W., et al. (2017) Multi-objective optimization of the hydrodynamic performance of the second stage of a multi-phase pump, Energies 10, 1–21. [Google Scholar]
  • Suh J.W., et al. (2018) Development of numerical Eulerian-Eulerian models for simulating multiphase pumps, J. Pet. Sci. Eng. 162, 588–601. [Google Scholar]
  • Tan L., Zhu B.S., Cao S.L., Wang Y.C., Wang B.B. (2014) Influence of prewhirl regulation by inlet guide vanes on cavitation performance of a centrifugal pump, Energies 7, 1050–1065. [Google Scholar]
  • Tan L., Zhang J.S. (2018) Energy performance and pressure fluctuation of a multiphase pump with different gas volume fractions, Energies 11, 1–14. [Google Scholar]
  • Xie C., et al. (2018) Numerical calculation of axial-flow pump’s pressure fluctuation and model test analysis, Adv. Mech. Eng. 10, 1–13. [Google Scholar]
  • Xu Y., Tan L., Liu Y., Cao S. (2017) Pressure fluctuation and flow pattern of a mixed-flow pump with different blade tip clearances under cavitation condition, Adv. Mech. Eng. 9, 1–12. [Google Scholar]
  • Yakhot V., Orszag S.A., Thangam S., Gatski T.B., Speziale C.G. (1992) Development of turbulence models for shear Flows by a double expansion technique, Phys. Fluids A-Fluid Dyn. 4, 1510–1520. [Google Scholar]
  • Yan D., Kovacevic A., Tang Q., Rane S., Zhang W.H. (2017) Numerical modelling of twin-screw pumps based on computational fluid dynamics, Proc. Inst. Mech. Eng., Part C: J. Mach. Eng. Sci. 231, 4617–4634. [CrossRef] [Google Scholar]
  • Yu Z.Y., Zhu B.S., Cao S.L., Liu Y. (2014) Effect of virtual mass force on the mixed transport process in a multiphase rotodynamic pump, Adv. Mech. Eng. 2, 1–7. [Google Scholar]
  • Yu Z.Y., Zhu B.S., Cao S.L. (2015) Interphase force analysis for air-water bubbly flow in a multiphase rotodynamic pump, Eng. Comput. 32, 2166–2180. [Google Scholar]
  • Zhang K.W. (2000) Theory of fluid machinery, Vol. 1, China Machine Press, Beijing, China. [Google Scholar]
  • Zhang Y., Zhang J., Zhu H., Cai S. (2014) 3D blade hydraulic design method of the rotodynamic multiphase pump impeller and performance research, Adv. Mech. Eng. 1, 1–10. [Google Scholar]
  • Zhang J., Cai S., Zhu H., Zhang Y. (2015) Experimental investigation of the flow at the entrance of a rotodynamic multiphase pump by visualization, J. Pet. Sci. Eng. 126, 254–261. [Google Scholar]
  • Zhang W., Yu Z., Zhu B. (2017a) Influence of tip clearance on pressure fluctuation in low specific speed mixed-flow pump passage, Energies 10, 1–16. [Google Scholar]
  • Zhang W., Zhu B., Yu Z., Yang C. (2017b) Numerical study of pressure fluctuation in the whole flow passage of a low specific speed mixed-flow pump, Adv. Mech. Eng. 9, 1–11. [Google Scholar]
  • Zhang W.W., Yu Z.Y., Zhu B.S. (2017c) Numerical study of pressure fluctuation in a gas-liquid two-phase mixed-flow pump, Energies 10, 1–14. [Google Scholar]
  • Zhang W.W., Yu Z.Y., Li Y.J. (2018a) Analysis of flow and phase interaction characteristics in a gas-liquid two-phase pump, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 69. [CrossRef] [Google Scholar]
  • Zhang W.W., Yu Z.Y., Zahid M.N., Li Y.J. (2018b) Study of the gas distribution in a multiphase rotodynamic pump based on interphase force analysis, Energies 11, 1–16. [Google Scholar]
  • Zhang W.W., Yu Z.Y., Li Y.J. (2019) Application of a non-uniform bubble model in a multiphase rotodynamic pump, J. Pet. Sci. Eng. 173, 1316–1322. [Google Scholar]
  • Zhu J.J., Zhang H.Q. (2016) Mechanistic modeling and numerical simulation of in-situ gas void fraction inside ESP impeller, J. Nat. Gas Sci. Eng. 36, 144–154. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.