Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Numéro d'article 31
Nombre de pages 14
Publié en ligne 3 septembre 2018
  • Arthur J.D., Bohm B., Coughlin B.J., Layne M. (2009) Evaluating implications of hydraulic fracturing in shale-gas reservoirs, J. Petrol. Technol. 61, 8, 53–54. [Google Scholar]
  • Bird R.B. (1987) Dynamics of polymeric liquids, Wiley, New York. [Google Scholar]
  • Brown M.L., Ozkan E., Raghavan R.S., Kazemi H. (2011) Practical solutions for pressure-transient responses of fractured horizontal wells in unconventional shale reservoirs, SPE Reserv. Eval. Eng. 14, 6, 663–676. [CrossRef] [Google Scholar]
  • Chang H.D. (1982) Correlation of turbulent drag reduction in dilute polymer solutions with rheological properties by an energy dissipation model, PhD Thesis, Texas A & M University, Texas. [Google Scholar]
  • Chen N.H. (1979) An explicit equation for friction factor in pipe, Ind. Eng. Chem. Fundamen. 18, 3, 296–297. [Google Scholar]
  • Cho H., Shah S.N., Osisanya S.O. (2002) A three-segment hydraulic model for cuttings transport in coiled tubing horizontal and deviated drilling, J. Can. Petrol. Technol. 41, 6, 32–39. [Google Scholar]
  • Darby R., Chang H.D. (1984) Generalized correlation for friction loss in drag reducing polymer solutions, Aiche J. 30, 2, 274–280. [CrossRef] [Google Scholar]
  • Doron P., Barnea D. (1993) A three-layer model for solid-liquid flow in horizontal pipes, Int. J. Multiphas. Flow 19, 6, 1029–1043. [CrossRef] [Google Scholar]
  • Doron P., Barnea D. (1995) Pressure drop and limit deposit velocity for solid-liquid flow in pipes, Chem. Eng. Sci. 50, 10, 1595–1604. [CrossRef] [Google Scholar]
  • Doron P., Granica D., Barnea D. (1987) Slurry flow in horizontal pipes – experimental and modeling, Int. J. Multiphas. Flow 13, 4, 535–547. [CrossRef] [Google Scholar]
  • Doron P., Simkhis M., Barnea D. (1997) Flow of solid-liquid mixtures in inclined pipes, Int. J. Multiphas. Flow 23, 2, 313–323. [Google Scholar]
  • Gallego F., Shah S.N. (2009) Friction pressure correlations for turbulent flow of drag reducing polymer solutions in straight and coiled tubing, J. Petrol. Sci. Eng. 65, 3–4, 147–161. [CrossRef] [Google Scholar]
  • Matoušek V. (2009) Predictive model for frictional pressure drop in settling-slurry pipe with stationary deposit, Powder Technol. 192, 3, 367–374. [CrossRef] [Google Scholar]
  • Marfaing O., Guingo M., Laviéville J.M., Mimouni S. (2017) Analytical void fraction profile near the walls in low Reynolds number bubbly flows in pipes: experimental comparison and estimate of the dispersion coefficient, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 4. [CrossRef] [Google Scholar]
  • Noetinger B. (1989) A two fluid model for sedimentation phenomena, Physica A 157, 1139–1179. [CrossRef] [Google Scholar]
  • Palisch T.T., Vincent M.C., Handren P.J. (2010) Slickwater fracturing: food for thought, SPE Prod. Oper. 25, 3, 327–344. [Google Scholar]
  • Pearson J.R.A. (1994) On suspension transport in a fracture: framework for a global model, J. Non-Newton. Fluid 54, 6, 503–513. [CrossRef] [Google Scholar]
  • Różański J. (2011) Flow of drag-reducing surfactant solutions in rough pipes, J. Non-Newton. Fluid 166, 5, 279–288. [CrossRef] [Google Scholar]
  • Ramadan A., Skalle P., Saasen A. (2005) Application of a three-layer modeling approach for solids transport in horizontal and inclined channels, Chem. Eng. Sci. 60, 10, 2557–2570. [CrossRef] [Google Scholar]
  • Ravelet F., Bakir F., Khelladi S., Rey R. (2013) Experimental study of hydraulic transport of large particles in horizontal pipes, Exp. Therm. Fluid Sci. 45, 2, 187–197. [CrossRef] [Google Scholar]
  • Ribeiro J.M., Eler F.M., Martins A.L., Scheid C.M., Calçada L.A., Meleiro L.A.D.C. (2017) A simplified model applied to the barite sag and fluid flow in drilling muds: simulation and experimental results, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 23. [Google Scholar]
  • Roussel N.P., Sharma M.M. (2011) Optimizing fracture spacing and sequencing in horizontal-well fracturing, SPE Prod. Oper. 26, 2, 173–184. [Google Scholar]
  • Sovacool B.K. (2014) Cornucopia or curse? Reviewing the costs and benefits of shale gas hydraulic fracturing (fracking), Renew. Sust. Energ. Rev. 37, 3, 249–264. [CrossRef] [Google Scholar]
  • Toms B.A. (1948) Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers, in: G.W. Scott Blair (ed.), Proc. First International Congress on Rheology, The Netherlands. [Google Scholar]
  • Zhang G., Gutierrez M., Li M. (2017) A coupled CFD-DEM approach to model particle-fluid mixture transport between two parallel plates to improve understanding of proppant micromechanics in hydraulic fractures, Powder Technol. 308, 235–248. [CrossRef] [Google Scholar]
  • Zhang G., Li M., Geng K., Han R., Xie M., Liao K. (2016) New integrated model of the settling velocity of proppants falling in viscoelastic slick-water fracturing fluids, J. Nat. Gas Sci. Eng. 33, 518–526. [CrossRef] [Google Scholar]
  • Zou C., Dong D., Wang Y., Li X., Huang J., Wang S., Guan Q., Zhang C., Wang H., Liu H. (2015) Shale gas in China: characteristics, challenges and prospects(I), Petrol. Explor. Deve. 42, 6, 753–767. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.