- Quérel C., Grondin O., Letellier C. (2015) Semi-physical mean-value NOx model for diesel engine control, Control. Eng. Pract. 40, 27–44. doi:10.1016/j.conengprac.2015.02.005 [CrossRef] [Google Scholar]
- Handler J., Flalko R., Dorenkamp R., Stehr H., Hilzendeger J., Kranzusch S. Volkswagen's New 2.0 l TDI Engine Fulfils the Most Stringent Emission Standards. MTZ 2008; 69. [Google Scholar]
- Payri F., Luján, Guardiola C., Pla B. (2015) A challenging future for the IC engine: New technologies and the control role, Oil Gas Sci. Technol. − Rev. IFP Energies Nouvelles 70, 15–30. doi:10.2516/ogst/2014002 [Google Scholar]
- Willems F., Doosje E., Engels F., Seykens X. (2010) Cylinder pressure-based control in heavy-duty EGR diesel engines using a virtual heat release and emission sensor, SAE Tech. Paper doi:10.4271/2010-01-0564 [Google Scholar]
- Asprion J., Chinellato O., Guzzella L. (2013) A fast and accurate physics-based model for the NOx emissions of diesel engines, Appl. Energy 103, 221–33. doi:10.1016/j.apenergy.2012.09.038 [CrossRef] [Google Scholar]
- Finesso R., Spessa E. (2014) A real time zero-dimensional diagnostic model for the calculation of in-cylinder temperatures, HRR and nitrogen oxides in diesel engines, Energy Convers. Manag. 79, 498–510. doi:10.1016/j.enconman.2013.12.045 [CrossRef] [Google Scholar]
- Catania A.E., Finesso R., Spessa E. (2011) Predictive zero-dimensional combustion model for DI diesel engine feed-forward control, Energy Convers. Manag. 52, 3159–3175. doi:10.1016/j.enconman.2011.05.003 [CrossRef] [Google Scholar]
- Guardiola C., López J.J., Martín J., García-Sarmiento D. (2011) Semiempirical in-cylinder pressure based model for NOx prediction oriented to control applications, Appl. Therm. Eng. 31, 3275–3286. doi:10.1016/j.applthermaleng.2011.05.048 [Google Scholar]
- Park W., Lee J., Min K., Yu J., Park S., Cho S. (2013) Prediction of real-time NO based on the in-cylinder pressure in Diesel engines, Proc Combust. Inst. 34, 3075–3082. doi:10.1016/j.proci.2012.06.170 [CrossRef] [Google Scholar]
- Hiroyasu H., Kadota T., Arai M. (1983) Development and use of a spray combustion modeling to predict diesel engine efficiency and pollutant emissions: Part 1 Combustion modeling, Bull. JSME 26, 569–575. doi:10.1299/jsme1958.26.569 [CrossRef] [Google Scholar]
- Poetsch C., Ofner H., Schutting E. (2011) Assessment of a multi zone combustion model for analysis and prediction of CI engine combustion and emissions, SAE Int. J. Engines. doi:10.4271/2011-01-1439 [Google Scholar]
- Grill M., Bargende M., Rether D., Schmid A. (2010) Quasi-dimensional and empirical modeling of compression-ignition engine combustion and emissions, SAE Int. Tech. Paper. doi:10.4271/2010-01-0151 [Google Scholar]
- Awad S., Varuvel E.G., Loubar K., Tazerout M. (2013) Single zone combustion modeling of biodiesel from wastes in diesel engine, Fuel 106, 558–568. doi:10.1016/j.fuel.2012.11.051 [CrossRef] [Google Scholar]
- D'Ambrosio S., Finesso R., Fu L., Mittica A., Spessa E. (2014) A control-oriented real-time semi-empirical model for the prediction of NOx emissions in diesel engines, Appl. Energy 130, 265–279. doi:10.1016/j.apenergy.2014.05.046 [CrossRef] [Google Scholar]
- Ericson C., Westerberg B., Andersson M., Egnell R. (2006) Modelling diesel engine combustion and nox formation for model based control and simulation of engine and exhaust aftertreatment systems, SAE Int. doi:10.4271/2006-01-0687 [Google Scholar]
- Wurzenberger J.C., Bardubitzki S., Bartsch P., Katrasnik T. (2011) Real time capable pollutant formation and exhaust aftertreatment modeling-HSDI diesel engine simulation, SAE Tech. Paper. doi:10.4271/2011-01-1438 [Google Scholar]
- Finesso R., Spessa E. (2014) A real time zero-dimensional diagnostic model for the calculation of in-cylinder temperatures, HRR and nitrogen oxides in diesel engines, Energy Convers. Manag. 79, 498–510 doi:10.1016/j.enconman.2013.12.045 [CrossRef] [Google Scholar]
- Wilhelmsson C., Tunestå P., Widd A., Johansson R. (2009) A fast physical NOx model implemented on an embedded system, IFAC Proc. 207–215. doi:10.3182/20091130-3-FR-4008.0001 [CrossRef] [Google Scholar]
- Wilhelmsson C., Tunestal P., Johansson B., Widd A., Johansson R. (2009) A physical two-zone NOx model intended for embedded implementation, SAE Tech. Paper. doi:10.4271/2009-01-1509 [Google Scholar]
- Guardiola C., Pla B., Blanco-Rodriguez D., Eriksson L. (2013) A computationally efficient Kalman filter based estimator for updating look-up tables applied to NOx estimation in diesel engines, Control. Eng. Pract. 21, 1455–1468 doi:10.1016/j.conengprac.2013.06.015 [CrossRef] [Google Scholar]
- Andersson M., Johansson B., Hultqvist A., Noehre C. (2006) A predictive real time NOx model for conventional and partially premixed diesel combustion, SAE Tech. Paper. doi:10.4271/2006-01-3329 [Google Scholar]
- Pischinger R., Krassnig G., Taučar G., Sams T. (1989) Thermodynamik der Verbrennungskraftmaschine, 5th ed, Springer-Verlag, Wien, New York [Google Scholar]
- Muric K., Tunestål P., Stenlåås O. (2013) A fast crank angle resolved zero-dimensional NOx model implemented on a field -programmable gate array, SAE Tech. Paper. doi:10.4271/2013-01-0344 [Google Scholar]
- Andersson M., Johansson B., Hultqvist A., Nöhre C. (2006) A real time NOx model for conventional and partially premixed diesel combustion, SAE Tech. Paper. doi:10.4271/2006-01-0195 [Google Scholar]
- Baratta M., Catania A.E., Ferrari A., Finesso R., Spessa E. (2011) Premixed-diffusive multizone model for combustion diagnostics in conventional and PCCI diesel engines, J. Eng. Gas Turbines Power 133, 102801 doi:10.1115/1.4003048 [CrossRef] [Google Scholar]
- Chase M.W. (1998) NIST-JANAF thermochemical tables, J. Phys. Chem. Ref. Data Monogr No 9 [Google Scholar]
- Glow plug breakthrough. Engine Technol Int 2011 76/ 96. [Google Scholar]
- AVL. Users Guide AVL BOOST. Graz: AVL List GmbH; 2011. [Google Scholar]
- Payri F., Broatch A., Margot X., Monelletta L. (2009) Sound quality assessment of diesel combustion noise using in-cylinder pressure components, Meas. Sci. Technol. 20, 15107. doi:10.1088/0957-0233/20/1/015107 [CrossRef] [Google Scholar]
- Payri F., Luján J.M., Martín J., Abbad A. (2010) Digital signal processing of in-cylinder pressure for combustion diagnosis of internal combustion engines, Mech. Syst. Signal Process. 24, 1767–1784. doi:10.1016/j.ymssp.2009.12.011 [CrossRef] [Google Scholar]
- Prah I., Katrašnik T. (2009) Application of optimization techniques to determine parameters of the vibe combustion model, Strojniški Vestn. − J. Mech. Eng. 55, 715–726 [Google Scholar]
- Ottikkutti P., Van G.J., Cui KR. (1991) Multizone modeling of a fumigated diesel engine, SAE Tech. Paper. doi:10.4271/910076 [Google Scholar]
- Şahin Z., Durgun O. (2007) Theoretical investigation of effects of light fuel fumigation on diesel engine performance and emissions, Energy Convers. Manag. 48, 1952–1964 doi:10.1016/j.enconman.2007.01.027 [CrossRef] [Google Scholar]
- Meng X.H., Jiang Z.H., Wang X.B., Jiang D.M. (2004) Quasi-dimensional multizone combustion model for direct injection engines fuelled with dimethyl ether, Proc. Inst. Mech. Eng. Part D-J. Automob. Eng. 218, 315–322 doi:10.1243/095440704322955830 [CrossRef] [Google Scholar]
- Payri F., Molina S., Martín J., Armas O. (2006) Influence of measurement errors and estimated parameters on combustion diagnosis, Appl. Therm. Eng. 26, 226–236 doi:10.1016/j.applthermaleng.2005.05.006 [CrossRef] [Google Scholar]
- Woschni G. (1967) A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine, SAE Tech. Paper. doi:10.4271/670931 [Google Scholar]
- Schwarz C. (2012) Calculation of the Real Working Process, Springer-Verlag, Heidelberg [Google Scholar]
- Hsu B.D. (2002) Practical Diesel-Engine Combustion Analysis, Society of Automotive Engineers, Inc., Warrendale [Google Scholar]
- Andersson M., Johansson B., Hultqvist A., Noehre C. (2006) A predictive real time NOx model for conventional and partially premixed diesel combustion, SAE Tech. Paper. doi:10.4271/2006-01-3329 [Google Scholar]
- Pattas K., Hӓfner G. (1973) Stickoxidbildung bei der ottomotorischen Verbrennung, MTZ 12, 397–404 [Google Scholar]
- Heywood J.B. (1988) Internal Combustion Engine Fundamentals, McGraw-Hill, New York, USA [Google Scholar]
- Koci C., Svensson K., Gehrke C. (2016) Investigating limitations of a two-zone NOx model applied to DI diesel combustion using 3-D modeling, SAE Tech. Paper. doi:10.4271/2016-01-0576 [Google Scholar]
- Lee S., Lee Y., Han K., Lee K.M., Yu J., Lee J., et al. (2016) Virtual NOx sensor for transient operation in light-duty diesel engine, SAE Tech. Paper. doi:10.4271/2016-01-0561 [Google Scholar]
- Engine management Electronic engine control units for powertrain management Reduced emissions2015. http://products.bosch-mobility-solutions.com/media/ubk_europe/db_application/downloads/pdf/antrieb/en_3/DS_ProductDataSheet_electronicEnginsControlUnits_EN_lowres_150921.pdf (accessed July 14, 2016) [Google Scholar]
- Kallenbach R. (2007) Trends in automotive electronics, J. Electr. Eng. 7, 1–6 [Google Scholar]
Open Access
Numéro |
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
|
|
---|---|---|
Numéro d'article | 11 | |
Nombre de pages | 17 | |
DOI | https://doi.org/10.2516/ogst/2018005 | |
Publié en ligne | 23 avril 2018 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.