Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Numéro 4, July–August 2017
Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Numéro d'article 25
Nombre de pages 15
DOI https://doi.org/10.2516/ogst/2017023
Publié en ligne 6 septembre 2017
  • GerdesR., KöberleC., WillebrandJ. (1991) The influence of numerical advection schemes on the results of ocean general circulation models, Clim. Dyn. 5, 4, 211–226. [Google Scholar]
  • NakayamaA., VengadesanS. (2002) On the influence of numerical schemes and subgrid – stress models on large eddy simulation of turbulent flow past a square cylinder, Int. J. Numer. Methods fluids 38, 3, 227–253. [CrossRef] [Google Scholar]
  • EkaterinarisJ. (2005) High-order accurate, low numerical diffusion methods for aerodynamics, Prog. Aerosp. Sci. 41, 3, 192–300. [CrossRef] [Google Scholar]
  • YeeH., SandhamN., DjomehriM. (1999) Low-dissipative high-order shock-capturing methods using characteristic-based filters, J. Comput. Phys. 150, 1, 199–238. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • JasakH. (1996) Error analysis and estimation for finite volume method with applications to fluid flow, Technical Report. [Google Scholar]
  • KravchenkoA., MoinP. (1997) On the effect of numerical errors in large eddy simulations of turbulent flows, J. Comput. Phys. 131, 2, 310–322. [CrossRef] [Google Scholar]
  • AubinJ., FletcherD., XuerebC. (2004) Modeling turbulent flow in stirred tanks with CFD: the influence of the modeling approach, turbulence model and numerical scheme, Exp. Therm. Fluid Sci. 28, 5, 431–445. [CrossRef] [Google Scholar]
  • SwebyP. (1984) High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal. 21, 5, 995–1011. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • ChockD., DunkerA. (1983) A comparison of numerical methods for solving the advection equation, Atmos. Environ. (1967) 17, 1, 11–24. [CrossRef] [EDP Sciences] [Google Scholar]
  • MisdariisA., RobertA., VermorelO., RichardS., PoinsotT. (2014) Numerical methods and turbulence modeling for les of piston engines: impact on flow motion and combustion, Oil Gas Sci. Technol. – Rev IFP 69, 83. [CrossRef] [EDP Sciences] [Google Scholar]
  • PopeS. (2001) Turbulent flows, Cambridge University Press, Cambridge. [Google Scholar]
  • di MareF., KnappsteinR., BaumannM. (2014) Application of LES-quality criteria to internal combustion engine flows, Comput. Fluids 89, 200–213. [CrossRef] [Google Scholar]
  • CelikI., CehreliZ., YavuzI. (2005) Index of resolution quality for large eddy simulations, J. Fluids Eng. 127, 5, 949–958. [CrossRef] [Google Scholar]
  • BaumE., PetersonB., BöhmB., DreizlerA. (2014) On the validation of LES applied to internal combustion engine flows: Part 1: comprehensive experimental database, Flow Turbul. Combust. 92, 269–297. [CrossRef] [Google Scholar]
  • PeskinC. (1972) Flow patterns around heart valves: a numerical method, J. Comput. Phys. 10, 2, 252–271. [NASA ADS] [CrossRef] [Google Scholar]
  • NguyenT., ProchF., WlokasI., KempfA. (2016) Large eddy simulation of an internal combustion engine using an efficient immersed boundary technique, Flow Turbul. Combust. 97, 191–230. [CrossRef] [Google Scholar]
  • MuppalaS., AluriN., DinkelackerF., LeipertzA. (2005) Development of an algebraic reaction rate closure for the numerical calculation of turbulent premixed methane, ethylene, and propane/air flames for pressures up to 1.0 MPa, Combust. Flame 140, 4, 257–266. [CrossRef] [Google Scholar]
  • PoinsotT., LelefS. (1992) Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys. 101, 1, 104–129. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • RiethM., ProchF., SteinO., PettitM., KempfA. (2014) Comparison of the sigma and Smagorinsky LES models for grid generated turbulence and a channel flow, Comput. Fluids 99, 172–181. [CrossRef] [Google Scholar]
  • NicoudF., TodaH., CabritO., BoseS., LeeJ. (2011) Using singular values to build a subgrid-scale model for large eddy simulations, Phys. Fluids 23 8, 085106. [CrossRef] [Google Scholar]
  • MaT., SteinO., ChakrabortyN., KempfA. (2013) A posteriori testing of algebraic flame surface density models for LES, Combust. Theory Model. 17, 3, 431–482. [CrossRef] [MathSciNet] [Google Scholar]
  • WyngaardJ. (1992) Atmospheric turbulence, Annu. Rev. Fluid Mech. 24, 1, 205–234. [CrossRef] [Google Scholar]
  • HeywoodJ. (1988) Internal combustion engine fundamentals, vol. 930, McGraw-Hill, New York. [Google Scholar]
  • KempfA., GeurtsB., OefeleinJ. (2011) Error analysis of large-eddy simulation of the turbulent non-premixed sydney bluff-body flame, Combust. Flame 158, 12, 2408–2419. [CrossRef] [Google Scholar]
  • NguyenT., JanasP., LucchiniT., D’ErricoG., KaiserS., KempfA. (2014) LES of flow processes in an SI engine using two approaches: Openfoam and PsiPhi, SAE Technical Paper 2014-01-1121. [Google Scholar]
  • ProchF., KempfA. (2015) Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds, Proc. Combust. Inst. 35, 3, 3337–3345. [CrossRef] [Google Scholar]
  • RittlerA., ProchF., KempfA. (2015) LES of the sydney piloted spray flame series with the PFGM/ATF approach and different sub-filter models, Combust. Flame 162, 4, 1575–1598. [CrossRef] [Google Scholar]
  • LeonardB. (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput. Methods Appl. Mech. Eng. 19, 1, 59–98. [CrossRef] [Google Scholar]
  • ZhouG. (1995) Numerical simulations of physical discontinuities in single and multi-fluid flows for arbitrary Mach numbers, Chalmers University of Technology, Gothenburg, Sweden. [Google Scholar]
  • Van LeerB. (1974) Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme, J. Comput. Phys. 14, 4, 361–370. [NASA ADS] [CrossRef] [Google Scholar]
  • KeatingM. (2011) Accelerating CFD solutions, Advantage 1, 48. [Google Scholar]
  • GrigorievM., SwiatekC., HittJ. (2010) Benchmarking CD-Adapco’s Star-CCM+ in a production design environment, ASME Turbo Expo 2010: Power for Land, Sea, and Air, June 14-18, Glasgow, UK, American Society of Mechanical Engineers, vol. 7, pp. 1019–1025. [CrossRef] [Google Scholar]
  • JasakH., JemcovA., TukovicZ. (2007) Openfoam: A C++ library for complex physics simulations, in: International Workshop on Coupled Methods in Numerical Dynamics vol. 1000, IUC Dubrovnik, Croatia, pp. 1–20. [Google Scholar]
  • KeskinenJ.-P (2016) Large eddy simulation of in-cylinder flows, PhD Thesis, Aalto University. [Google Scholar]
  • WehrfritzA., VuorinenV., KaarioO., LarmiM. (2013) Large eddy simulation of high-velocity fuel sprays: studying mesh resolution and breakup model effects for spray a, Atomization Sprays 23, 5, 419–442. [CrossRef] [Google Scholar]
  • BorisJ., GrinsteinF., OranE., KolbeR. (1992) New insights into large eddy simulation, Fluid Dyn. Res. 10, 4-6, 199–228. [NASA ADS] [CrossRef] [Google Scholar]
  • JanasP., WlokasI., BöhmB., KempfA. (2017) On the evolution of the flow field in a spark ignition engine, Flow Turbul. Combust. 98, 237–264. [CrossRef] [Google Scholar]
  • BreuerS., OberlackM., PetersN. (2005) Non-isotropic length scales during the compression stroke of a motored piston engine, Flow Turbul. Combust. 74, 2, 145–167. [CrossRef] [Google Scholar]
  • KleinM. (2005) An attempt to assess the quality of large eddy simulations in the context of implicit filtering, Flow Turbul. Combust. 75, 1-4, 131–147. [CrossRef] [Google Scholar]
  • GousseauP., BlockenB., Van HeijstG. (2013) Quality assessment of large-eddy simulation of wind flow around a high-rise building: validation and solution verification, Comput. Fluids 79, 120–133. [CrossRef] [Google Scholar]
  • FreitagM., KleinM. (2006) An improved method to assess the quality of large eddy simulations in the context of implicit filtering, J. Turbulence 7, N40. [CrossRef] [Google Scholar]
  • AddadY., GaitondeU., LaurenceD., RolfoS. (2008) Optimal unstructured meshing for large eddy simulations, in: Quality and reliability of large-eddy simulations, Springer, Dordrecht, pp. 93–103. [CrossRef] [Google Scholar]
  • PettitM., CoritonB., GomezA., KempfA. (2011) Large-eddy simulation and experiments on non-premixed highly turbulent opposed jet flows, Proc. Combust. Inst. 33, 1, 1391–1399. [CrossRef] [Google Scholar]
  • YoshizawaA. (1986) Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling, Phys. Fluids (1958-1988) 29, 7, 2152–2164. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.