- GerdesR., KöberleC., WillebrandJ. (1991) The influence of numerical advection schemes on the results of ocean general circulation models, Clim. Dyn. 5, 4, 211–226. [Google Scholar]
- NakayamaA., VengadesanS. (2002) On the influence of numerical schemes and subgrid – stress models on large eddy simulation of turbulent flow past a square cylinder, Int. J. Numer. Methods fluids 38, 3, 227–253. [CrossRef] [Google Scholar]
- EkaterinarisJ. (2005) High-order accurate, low numerical diffusion methods for aerodynamics, Prog. Aerosp. Sci. 41, 3, 192–300. [CrossRef] [Google Scholar]
- YeeH., SandhamN., DjomehriM. (1999) Low-dissipative high-order shock-capturing methods using characteristic-based filters, J. Comput. Phys. 150, 1, 199–238. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- JasakH. (1996) Error analysis and estimation for finite volume method with applications to fluid flow, Technical Report. [Google Scholar]
- KravchenkoA., MoinP. (1997) On the effect of numerical errors in large eddy simulations of turbulent flows, J. Comput. Phys. 131, 2, 310–322. [CrossRef] [Google Scholar]
- AubinJ., FletcherD., XuerebC. (2004) Modeling turbulent flow in stirred tanks with CFD: the influence of the modeling approach, turbulence model and numerical scheme, Exp. Therm. Fluid Sci. 28, 5, 431–445. [CrossRef] [Google Scholar]
- SwebyP. (1984) High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal. 21, 5, 995–1011. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- ChockD., DunkerA. (1983) A comparison of numerical methods for solving the advection equation, Atmos. Environ. (1967) 17, 1, 11–24. [CrossRef] [EDP Sciences] [Google Scholar]
- MisdariisA., RobertA., VermorelO., RichardS., PoinsotT. (2014) Numerical methods and turbulence modeling for les of piston engines: impact on flow motion and combustion, Oil Gas Sci. Technol. – Rev IFP 69, 83. [Google Scholar]
- PopeS. (2001) Turbulent flows, Cambridge University Press, Cambridge. [Google Scholar]
- di MareF., KnappsteinR., BaumannM. (2014) Application of LES-quality criteria to internal combustion engine flows, Comput. Fluids 89, 200–213. [CrossRef] [Google Scholar]
- CelikI., CehreliZ., YavuzI. (2005) Index of resolution quality for large eddy simulations, J. Fluids Eng. 127, 5, 949–958. [Google Scholar]
- BaumE., PetersonB., BöhmB., DreizlerA. (2014) On the validation of LES applied to internal combustion engine flows: Part 1: comprehensive experimental database, Flow Turbul. Combust. 92, 269–297. [Google Scholar]
- PeskinC. (1972) Flow patterns around heart valves: a numerical method, J. Comput. Phys. 10, 2, 252–271. [NASA ADS] [CrossRef] [Google Scholar]
- NguyenT., ProchF., WlokasI., KempfA. (2016) Large eddy simulation of an internal combustion engine using an efficient immersed boundary technique, Flow Turbul. Combust. 97, 191–230. [CrossRef] [Google Scholar]
- MuppalaS., AluriN., DinkelackerF., LeipertzA. (2005) Development of an algebraic reaction rate closure for the numerical calculation of turbulent premixed methane, ethylene, and propane/air flames for pressures up to 1.0 MPa, Combust. Flame 140, 4, 257–266. [Google Scholar]
- PoinsotT., LelefS. (1992) Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys. 101, 1, 104–129. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- RiethM., ProchF., SteinO., PettitM., KempfA. (2014) Comparison of the sigma and Smagorinsky LES models for grid generated turbulence and a channel flow, Comput. Fluids 99, 172–181. [CrossRef] [Google Scholar]
- NicoudF., TodaH., CabritO., BoseS., LeeJ. (2011) Using singular values to build a subgrid-scale model for large eddy simulations, Phys. Fluids 23 8, 085106. [CrossRef] [Google Scholar]
- MaT., SteinO., ChakrabortyN., KempfA. (2013) A posteriori testing of algebraic flame surface density models for LES, Combust. Theory Model. 17, 3, 431–482. [CrossRef] [MathSciNet] [Google Scholar]
- WyngaardJ. (1992) Atmospheric turbulence, Annu. Rev. Fluid Mech. 24, 1, 205–234. [CrossRef] [Google Scholar]
- HeywoodJ. (1988) Internal combustion engine fundamentals, vol. 930, McGraw-Hill, New York. [Google Scholar]
- KempfA., GeurtsB., OefeleinJ. (2011) Error analysis of large-eddy simulation of the turbulent non-premixed sydney bluff-body flame, Combust. Flame 158, 12, 2408–2419. [CrossRef] [Google Scholar]
- NguyenT., JanasP., LucchiniT., D’ErricoG., KaiserS., KempfA. (2014) LES of flow processes in an SI engine using two approaches: Openfoam and PsiPhi, SAE Technical Paper 2014-01-1121. [Google Scholar]
- ProchF., KempfA. (2015) Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds, Proc. Combust. Inst. 35, 3, 3337–3345. [CrossRef] [Google Scholar]
- RittlerA., ProchF., KempfA. (2015) LES of the sydney piloted spray flame series with the PFGM/ATF approach and different sub-filter models, Combust. Flame 162, 4, 1575–1598. [CrossRef] [Google Scholar]
- LeonardB. (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput. Methods Appl. Mech. Eng. 19, 1, 59–98. [Google Scholar]
- ZhouG. (1995) Numerical simulations of physical discontinuities in single and multi-fluid flows for arbitrary Mach numbers, Chalmers University of Technology, Gothenburg, Sweden. [Google Scholar]
- Van LeerB. (1974) Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme, J. Comput. Phys. 14, 4, 361–370. [NASA ADS] [CrossRef] [Google Scholar]
- KeatingM. (2011) Accelerating CFD solutions, Advantage 1, 48. [Google Scholar]
- GrigorievM., SwiatekC., HittJ. (2010) Benchmarking CD-Adapco’s Star-CCM+ in a production design environment, ASME Turbo Expo 2010: Power for Land, Sea, and Air, June 14-18, Glasgow, UK, American Society of Mechanical Engineers, vol. 7, pp. 1019–1025. [CrossRef] [Google Scholar]
- JasakH., JemcovA., TukovicZ. (2007) Openfoam: A C++ library for complex physics simulations, in: International Workshop on Coupled Methods in Numerical Dynamics vol. 1000, IUC Dubrovnik, Croatia, pp. 1–20. [Google Scholar]
- KeskinenJ.-P (2016) Large eddy simulation of in-cylinder flows, PhD Thesis, Aalto University. [Google Scholar]
- WehrfritzA., VuorinenV., KaarioO., LarmiM. (2013) Large eddy simulation of high-velocity fuel sprays: studying mesh resolution and breakup model effects for spray a, Atomization Sprays 23, 5, 419–442. [CrossRef] [Google Scholar]
- BorisJ., GrinsteinF., OranE., KolbeR. (1992) New insights into large eddy simulation, Fluid Dyn. Res. 10, 4-6, 199–228. [NASA ADS] [CrossRef] [Google Scholar]
- JanasP., WlokasI., BöhmB., KempfA. (2017) On the evolution of the flow field in a spark ignition engine, Flow Turbul. Combust. 98, 237–264. [Google Scholar]
- BreuerS., OberlackM., PetersN. (2005) Non-isotropic length scales during the compression stroke of a motored piston engine, Flow Turbul. Combust. 74, 2, 145–167. [CrossRef] [Google Scholar]
- KleinM. (2005) An attempt to assess the quality of large eddy simulations in the context of implicit filtering, Flow Turbul. Combust. 75, 1-4, 131–147. [CrossRef] [Google Scholar]
- GousseauP., BlockenB., Van HeijstG. (2013) Quality assessment of large-eddy simulation of wind flow around a high-rise building: validation and solution verification, Comput. Fluids 79, 120–133. [CrossRef] [Google Scholar]
- FreitagM., KleinM. (2006) An improved method to assess the quality of large eddy simulations in the context of implicit filtering, J. Turbulence 7, N40. [Google Scholar]
- AddadY., GaitondeU., LaurenceD., RolfoS. (2008) Optimal unstructured meshing for large eddy simulations, in: Quality and reliability of large-eddy simulations, Springer, Dordrecht, pp. 93–103. [CrossRef] [Google Scholar]
- PettitM., CoritonB., GomezA., KempfA. (2011) Large-eddy simulation and experiments on non-premixed highly turbulent opposed jet flows, Proc. Combust. Inst. 33, 1, 1391–1399. [CrossRef] [Google Scholar]
- YoshizawaA. (1986) Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling, Phys. Fluids (1958-1988) 29, 7, 2152–2164. [CrossRef] [Google Scholar]
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Number 4, July–August 2017
Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
|
|
---|---|---|
Article Number | 25 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.2516/ogst/2017023 | |
Published online | 06 September 2017 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.