Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Number 4, July–August 2017
Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Article Number 25
Number of page(s) 15
Published online 06 September 2017
  • GerdesR., KöberleC., WillebrandJ. (1991) The influence of numerical advection schemes on the results of ocean general circulation models, Clim. Dyn. 5, 4, 211–226.
  • NakayamaA., VengadesanS. (2002) On the influence of numerical schemes and subgrid – stress models on large eddy simulation of turbulent flow past a square cylinder, Int. J. Numer. Methods fluids 38, 3, 227–253. [CrossRef]
  • EkaterinarisJ. (2005) High-order accurate, low numerical diffusion methods for aerodynamics, Prog. Aerosp. Sci. 41, 3, 192–300. [CrossRef]
  • YeeH., SandhamN., DjomehriM. (1999) Low-dissipative high-order shock-capturing methods using characteristic-based filters, J. Comput. Phys. 150, 1, 199–238. [CrossRef] [MathSciNet]
  • JasakH. (1996) Error analysis and estimation for finite volume method with applications to fluid flow, Technical Report.
  • KravchenkoA., MoinP. (1997) On the effect of numerical errors in large eddy simulations of turbulent flows, J. Comput. Phys. 131, 2, 310–322. [CrossRef]
  • AubinJ., FletcherD., XuerebC. (2004) Modeling turbulent flow in stirred tanks with CFD: the influence of the modeling approach, turbulence model and numerical scheme, Exp. Therm. Fluid Sci. 28, 5, 431–445. [CrossRef]
  • SwebyP. (1984) High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal. 21, 5, 995–1011. [NASA ADS] [CrossRef] [MathSciNet]
  • ChockD., DunkerA. (1983) A comparison of numerical methods for solving the advection equation, Atmos. Environ. (1967) 17, 1, 11–24. [CrossRef] [EDP Sciences]
  • MisdariisA., RobertA., VermorelO., RichardS., PoinsotT. (2014) Numerical methods and turbulence modeling for les of piston engines: impact on flow motion and combustion, Oil Gas Sci. Technol. – Rev IFP 69, 83. [CrossRef] [EDP Sciences]
  • PopeS. (2001) Turbulent flows, Cambridge University Press, Cambridge.
  • di MareF., KnappsteinR., BaumannM. (2014) Application of LES-quality criteria to internal combustion engine flows, Comput. Fluids 89, 200–213. [CrossRef]
  • CelikI., CehreliZ., YavuzI. (2005) Index of resolution quality for large eddy simulations, J. Fluids Eng. 127, 5, 949–958. [CrossRef]
  • BaumE., PetersonB., BöhmB., DreizlerA. (2014) On the validation of LES applied to internal combustion engine flows: Part 1: comprehensive experimental database, Flow Turbul. Combust. 92, 269–297. [CrossRef]
  • PeskinC. (1972) Flow patterns around heart valves: a numerical method, J. Comput. Phys. 10, 2, 252–271. [NASA ADS] [CrossRef]
  • NguyenT., ProchF., WlokasI., KempfA. (2016) Large eddy simulation of an internal combustion engine using an efficient immersed boundary technique, Flow Turbul. Combust. 97, 191–230. [CrossRef]
  • MuppalaS., AluriN., DinkelackerF., LeipertzA. (2005) Development of an algebraic reaction rate closure for the numerical calculation of turbulent premixed methane, ethylene, and propane/air flames for pressures up to 1.0 MPa, Combust. Flame 140, 4, 257–266. [CrossRef]
  • PoinsotT., LelefS. (1992) Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys. 101, 1, 104–129. [NASA ADS] [CrossRef] [MathSciNet]
  • RiethM., ProchF., SteinO., PettitM., KempfA. (2014) Comparison of the sigma and Smagorinsky LES models for grid generated turbulence and a channel flow, Comput. Fluids 99, 172–181. [CrossRef]
  • NicoudF., TodaH., CabritO., BoseS., LeeJ. (2011) Using singular values to build a subgrid-scale model for large eddy simulations, Phys. Fluids 23 8, 085106. [CrossRef]
  • MaT., SteinO., ChakrabortyN., KempfA. (2013) A posteriori testing of algebraic flame surface density models for LES, Combust. Theory Model. 17, 3, 431–482. [CrossRef] [MathSciNet]
  • WyngaardJ. (1992) Atmospheric turbulence, Annu. Rev. Fluid Mech. 24, 1, 205–234. [CrossRef]
  • HeywoodJ. (1988) Internal combustion engine fundamentals, vol. 930, McGraw-Hill, New York.
  • KempfA., GeurtsB., OefeleinJ. (2011) Error analysis of large-eddy simulation of the turbulent non-premixed sydney bluff-body flame, Combust. Flame 158, 12, 2408–2419. [CrossRef]
  • NguyenT., JanasP., LucchiniT., D’ErricoG., KaiserS., KempfA. (2014) LES of flow processes in an SI engine using two approaches: Openfoam and PsiPhi, SAE Technical Paper 2014-01-1121.
  • ProchF., KempfA. (2015) Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds, Proc. Combust. Inst. 35, 3, 3337–3345. [CrossRef]
  • RittlerA., ProchF., KempfA. (2015) LES of the sydney piloted spray flame series with the PFGM/ATF approach and different sub-filter models, Combust. Flame 162, 4, 1575–1598. [CrossRef]
  • LeonardB. (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput. Methods Appl. Mech. Eng. 19, 1, 59–98. [CrossRef]
  • ZhouG. (1995) Numerical simulations of physical discontinuities in single and multi-fluid flows for arbitrary Mach numbers, Chalmers University of Technology, Gothenburg, Sweden.
  • Van LeerB. (1974) Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme, J. Comput. Phys. 14, 4, 361–370. [NASA ADS] [CrossRef]
  • KeatingM. (2011) Accelerating CFD solutions, Advantage 1, 48.
  • GrigorievM., SwiatekC., HittJ. (2010) Benchmarking CD-Adapco’s Star-CCM+ in a production design environment, ASME Turbo Expo 2010: Power for Land, Sea, and Air, June 14-18, Glasgow, UK, American Society of Mechanical Engineers, vol. 7, pp. 1019–1025. [CrossRef]
  • JasakH., JemcovA., TukovicZ. (2007) Openfoam: A C++ library for complex physics simulations, in: International Workshop on Coupled Methods in Numerical Dynamics vol. 1000, IUC Dubrovnik, Croatia, pp. 1–20.
  • KeskinenJ.-P (2016) Large eddy simulation of in-cylinder flows, PhD Thesis, Aalto University.
  • WehrfritzA., VuorinenV., KaarioO., LarmiM. (2013) Large eddy simulation of high-velocity fuel sprays: studying mesh resolution and breakup model effects for spray a, Atomization Sprays 23, 5, 419–442. [CrossRef]
  • BorisJ., GrinsteinF., OranE., KolbeR. (1992) New insights into large eddy simulation, Fluid Dyn. Res. 10, 4-6, 199–228. [NASA ADS] [CrossRef]
  • JanasP., WlokasI., BöhmB., KempfA. (2017) On the evolution of the flow field in a spark ignition engine, Flow Turbul. Combust. 98, 237–264. [CrossRef]
  • BreuerS., OberlackM., PetersN. (2005) Non-isotropic length scales during the compression stroke of a motored piston engine, Flow Turbul. Combust. 74, 2, 145–167. [CrossRef]
  • KleinM. (2005) An attempt to assess the quality of large eddy simulations in the context of implicit filtering, Flow Turbul. Combust. 75, 1-4, 131–147. [CrossRef]
  • GousseauP., BlockenB., Van HeijstG. (2013) Quality assessment of large-eddy simulation of wind flow around a high-rise building: validation and solution verification, Comput. Fluids 79, 120–133. [CrossRef]
  • FreitagM., KleinM. (2006) An improved method to assess the quality of large eddy simulations in the context of implicit filtering, J. Turbulence 7, N40. [CrossRef]
  • AddadY., GaitondeU., LaurenceD., RolfoS. (2008) Optimal unstructured meshing for large eddy simulations, in: Quality and reliability of large-eddy simulations, Springer, Dordrecht, pp. 93–103. [CrossRef]
  • PettitM., CoritonB., GomezA., KempfA. (2011) Large-eddy simulation and experiments on non-premixed highly turbulent opposed jet flows, Proc. Combust. Inst. 33, 1, 1391–1399. [CrossRef]
  • YoshizawaA. (1986) Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling, Phys. Fluids (1958-1988) 29, 7, 2152–2164. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.