Dossier: SimRace 2015: Numerical Methods and High Performance Computing for Industrial Fluid Flows
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Numéro 6, November–December 2016
Dossier: SimRace 2015: Numerical Methods and High Performance Computing for Industrial Fluid Flows
Numéro d'article 64
Nombre de pages 12
DOI https://doi.org/10.2516/ogst/2016019
Publié en ligne 7 novembre 2016
  • Hirt C.W., Amsden A.A., Cook J.L. (1974) An arbitrary Lagrangian–Eulerian computing method for all flow speeds, J. Comput. Phys. 14, 227–253. [Google Scholar]
  • Benson D. (1992) Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Methods Appl. Mech. Eng. 99, 235–394. [Google Scholar]
  • Youngs D. (2007) The Lagrange-remap method, in F.F. Grinstein, L.G. Margolin, W.J. Rider (eds), Implicit large Eddy simulation: Computing turbulent flow dynamics, Cambridge University Press. [Google Scholar]
  • Poncet R., Peybernes M., Gasc T., De Vuyst F. (2016) Performance modeling of a compressible hydrodynamics solver on multicore CPUs, in IOS Ebook: Parallel Computing: on the road to Exascale, Series “Advances in parallel computing”, Joubert G.R. et al. (ed.), pp. 449–458, DOI: 10.3233/978-1-61499-621-7-449. [Google Scholar]
  • Williams S., Waterman A., Patterson Roofline D. (2009) An insightful visual performance model for multicore architectures, Commun. ACM 52, 65–76. [Google Scholar]
  • Treibig J., Hager G. (2010) Introducing a performance model for bandwidth-limited loop kernels, Proceedings of the Workshop “Memory issues on Multi- and Manycore Platform” at PPAM 2009, Lecture Notes in Computer Science 6067, 615–624. [Google Scholar]
  • Stengel H., Treibig J., Hager G., Wellein G. (2015) Quantifying performance bottlenecks of stencil computations using the Execution-Cache-Memory model, Proc. ICS’15, Proc. of the 29th ACM on Int. Conf. on Supercomputing, pp. 207-2016, ACM, New York, ISBN: 978-1-4503-3559-1, DOI: 10.1145/2751205.2751240. [Google Scholar]
  • Colella P., Woodward P.R. (1984) The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys. 54, 115–173. [Google Scholar]
  • Després B., Mazeran C. (2005) Lagrangian gas dynamics in two dimensions and Lagrangian systems, Arch. Rational Mech. Anal. 178, 327–372. [CrossRef] [MathSciNet] [Google Scholar]
  • Maire P.-H., Abgrall R., Breil J., Ovadia J. (2007) A cell-centered Lagrangian scheme for compressible flow problems, SIAM J. Sci. Comput. 29, 1781–1824. [MathSciNet] [Google Scholar]
  • Maire P.-H. (2009) A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, J. Comput. Phys. 228, 2391–2425. [CrossRef] [Google Scholar]
  • Dukowicz J.K., Baumgardner J.R. (2000) Incremental remapping as a transport/advection algorithm, J. Comput. Phys. 160, 318–335. [CrossRef] [Google Scholar]
  • Schiesser W.E. (1991) The Numerical Method of Lines, Academic Press, ISBN 0-12-624130-9. [Google Scholar]
  • Toro E.F. (2009) Riemann solvers and numerical methods for fluid dynamics. A practical introduction, 3rd edn., Springer, ISBN 978-3-540-25202-3, DOI: 10.1007/b79761. [Google Scholar]
  • Liou M.S. (1996) A sequel to AUSM: AUSM+, J. Comput. Phys. 129, 2, 364–382. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Sweby P.K. (1984) High resolution schemes using flux-limiters for hyperbolic conservation laws, SIAM J. Numer. Anal. 21, 995–1011. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Sod G.A. (1971) A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys. 27, 1–31. [Google Scholar]
  • Després B., Lagoutière F. (2001) Contact discontinuity capturing schemes for linear advection and compressible gas dynamics, J. Sci. Comput. 16, 479–524. [CrossRef] [Google Scholar]
  • Després B., Lagoutière F., Labourasse E., Marmajou I. (2010) An antidissipative transport scheme on unstructured meshes for multicomponent flows, IJFV 7, 30–65. [Google Scholar]
  • De Vuyst F., Béchereau M., Gasc T., Motte R., Peybernes M., Poncet R. (2016) Stable and accurate low-diffusive interface capturing advection schemes, Proc. of the MULTIMAT 2015 Conference Würsburg, arXiv:1605.07091 (preprint). [Google Scholar]
  • Park J.S., Kim C. (2011) Multi-dimensional limiting process for discontinuous Galerkin methods on unstructured grids, in Computational Fluid Dynamics 2010, Kuzmin A. (ed.), Springer, pp. 179–184, ISBN 978-3-642-17883-2. [CrossRef] [Google Scholar]
  • Rider A.J., Kothe D.B. (1998) Reconstructing volume tracking, J. Comput. Phys. 141, 112–152. [CrossRef] [Google Scholar]
  • Bernard-Champmartin A., De Vuyst F. (2014) A low diffusive Lagrange-remap scheme for the simulation of violent air-water free-surface flows, J. Comput. Phys. 274, 19–49. [CrossRef] [Google Scholar]
  • Abgrall R. (1996) How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach, J. Comput. Phys. 125, 150–160. [CrossRef] [MathSciNet] [Google Scholar]
  • Saurel R., Abgrall R. (1999) A simple method for compressible multifluid flows, SIAM J. Sci. Comput. 21, 1115–1145. [CrossRef] [MathSciNet] [Google Scholar]
  • Farhat C., Rallu A., Shankaran S. (2008) A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow computation of underwater implosions, J. Comput. Phys. 227, 7640–7700. [CrossRef] [Google Scholar]
  • Bachmann M., Helluy P., Jung J., Mathis H., Müller S. (2013) Random sampling remap for compressible two-phase flows, Comput. Fluids 86, 275–283. [CrossRef] [Google Scholar]
  • Loubère R., Maire P.-H., Shashkov M., Breil J., Galera S. (2010) ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method, J. Comput. Phys. 229, 4724–4761. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.