Dossier: SimRace 2015: Numerical Methods and High Performance Computing for Industrial Fluid Flows
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 6, November–December 2016
Dossier: SimRace 2015: Numerical Methods and High Performance Computing for Industrial Fluid Flows
Article Number 64
Number of page(s) 12
DOI https://doi.org/10.2516/ogst/2016019
Published online 07 November 2016
  • Hirt C.W., Amsden A.A., Cook J.L. (1974) An arbitrary Lagrangian–Eulerian computing method for all flow speeds, J. Comput. Phys. 14, 227–253. [Google Scholar]
  • Benson D. (1992) Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Methods Appl. Mech. Eng. 99, 235–394. [Google Scholar]
  • Youngs D. (2007) The Lagrange-remap method, in F.F. Grinstein, L.G. Margolin, W.J. Rider (eds), Implicit large Eddy simulation: Computing turbulent flow dynamics, Cambridge University Press. [Google Scholar]
  • Poncet R., Peybernes M., Gasc T., De Vuyst F. (2016) Performance modeling of a compressible hydrodynamics solver on multicore CPUs, in IOS Ebook: Parallel Computing: on the road to Exascale, Series “Advances in parallel computing”, Joubert G.R. et al. (ed.), pp. 449–458, DOI: 10.3233/978-1-61499-621-7-449. [Google Scholar]
  • Williams S., Waterman A., Patterson Roofline D. (2009) An insightful visual performance model for multicore architectures, Commun. ACM 52, 65–76. [Google Scholar]
  • Treibig J., Hager G. (2010) Introducing a performance model for bandwidth-limited loop kernels, Proceedings of the Workshop “Memory issues on Multi- and Manycore Platform” at PPAM 2009, Lecture Notes in Computer Science 6067, 615–624. [Google Scholar]
  • Stengel H., Treibig J., Hager G., Wellein G. (2015) Quantifying performance bottlenecks of stencil computations using the Execution-Cache-Memory model, Proc. ICS’15, Proc. of the 29th ACM on Int. Conf. on Supercomputing, pp. 207-2016, ACM, New York, ISBN: 978-1-4503-3559-1, DOI: 10.1145/2751205.2751240. [Google Scholar]
  • Colella P., Woodward P.R. (1984) The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys. 54, 115–173. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Després B., Mazeran C. (2005) Lagrangian gas dynamics in two dimensions and Lagrangian systems, Arch. Rational Mech. Anal. 178, 327–372. [CrossRef] [MathSciNet] [Google Scholar]
  • Maire P.-H., Abgrall R., Breil J., Ovadia J. (2007) A cell-centered Lagrangian scheme for compressible flow problems, SIAM J. Sci. Comput. 29, 1781–1824. [MathSciNet] [Google Scholar]
  • Maire P.-H. (2009) A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, J. Comput. Phys. 228, 2391–2425. [CrossRef] [Google Scholar]
  • Dukowicz J.K., Baumgardner J.R. (2000) Incremental remapping as a transport/advection algorithm, J. Comput. Phys. 160, 318–335. [CrossRef] [Google Scholar]
  • Schiesser W.E. (1991) The Numerical Method of Lines, Academic Press, ISBN 0-12-624130-9. [Google Scholar]
  • Toro E.F. (2009) Riemann solvers and numerical methods for fluid dynamics. A practical introduction, 3rd edn., Springer, ISBN 978-3-540-25202-3, DOI: 10.1007/b79761. [CrossRef] [Google Scholar]
  • Liou M.S. (1996) A sequel to AUSM: AUSM+, J. Comput. Phys. 129, 2, 364–382. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Sweby P.K. (1984) High resolution schemes using flux-limiters for hyperbolic conservation laws, SIAM J. Numer. Anal. 21, 995–1011. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Sod G.A. (1971) A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys. 27, 1–31. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Després B., Lagoutière F. (2001) Contact discontinuity capturing schemes for linear advection and compressible gas dynamics, J. Sci. Comput. 16, 479–524. [CrossRef] [Google Scholar]
  • Després B., Lagoutière F., Labourasse E., Marmajou I. (2010) An antidissipative transport scheme on unstructured meshes for multicomponent flows, IJFV 7, 30–65. [Google Scholar]
  • De Vuyst F., Béchereau M., Gasc T., Motte R., Peybernes M., Poncet R. (2016) Stable and accurate low-diffusive interface capturing advection schemes, Proc. of the MULTIMAT 2015 Conference Würsburg, arXiv:1605.07091 (preprint). [Google Scholar]
  • Park J.S., Kim C. (2011) Multi-dimensional limiting process for discontinuous Galerkin methods on unstructured grids, in Computational Fluid Dynamics 2010, Kuzmin A. (ed.), Springer, pp. 179–184, ISBN 978-3-642-17883-2. [CrossRef] [Google Scholar]
  • Rider A.J., Kothe D.B. (1998) Reconstructing volume tracking, J. Comput. Phys. 141, 112–152. [CrossRef] [Google Scholar]
  • Bernard-Champmartin A., De Vuyst F. (2014) A low diffusive Lagrange-remap scheme for the simulation of violent air-water free-surface flows, J. Comput. Phys. 274, 19–49. [CrossRef] [Google Scholar]
  • Abgrall R. (1996) How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach, J. Comput. Phys. 125, 150–160. [CrossRef] [MathSciNet] [Google Scholar]
  • Saurel R., Abgrall R. (1999) A simple method for compressible multifluid flows, SIAM J. Sci. Comput. 21, 1115–1145. [CrossRef] [MathSciNet] [Google Scholar]
  • Farhat C., Rallu A., Shankaran S. (2008) A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow computation of underwater implosions, J. Comput. Phys. 227, 7640–7700. [CrossRef] [Google Scholar]
  • Bachmann M., Helluy P., Jung J., Mathis H., Müller S. (2013) Random sampling remap for compressible two-phase flows, Comput. Fluids 86, 275–283. [CrossRef] [Google Scholar]
  • Loubère R., Maire P.-H., Shashkov M., Breil J., Galera S. (2010) ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method, J. Comput. Phys. 229, 4724–4761. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.