Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Numéro 3, May–June 2016
Numéro d'article 39
Nombre de pages 22
Publié en ligne 29 septembre 2015
  • Adelinet M., Dorbath C., Le Ravalec M., Fortin J., Guéguen Y. (2011) Deriving microstructure and fluid state within the Icelandic crust from the inversion of tomography data, Geophys. Res. Lett. 38, L03305. [CrossRef] [Google Scholar]
  • Al-Harrasi O.H., Al-Anboori A., Wüstefeld A., Kendall J.-M. (2011) Seismic anisotropy in a hydrocarbon field estimated from microseismic data, Geophysical Prospecting 59, 227–243. [CrossRef] [Google Scholar]
  • Anderson D.L., Minster B., Cole D. (1974) The effect of oriented cracks on seismic velocities, J. Geophys. Res. 79, 4011–4015. [CrossRef] [Google Scholar]
  • Barthélémy J.F. (2005) Approche micromécanique de la rupture et de la fissuration dans les geomatériaux, PhD Thesis, École nationale des ponts et chaussées. [Google Scholar]
  • Barthélémy J.F. (2009) Compliance and Hill polarization tensor of a crack in an anisotropic matrix, Int. J. Solids Str. 46, 22-23, 4064–4072. [CrossRef] [Google Scholar]
  • Batchelor A.S. (1982) The stimulation of a Hot Dry Rock geothermal reservoir in the Cornubian granite, England, Proceedings 8th workshop on Geothermal Reservoir Engineering, Stanford, California, USA, pp. 237–247. [Google Scholar]
  • Bérard T., Cornet F.H. (2003) Evidence of thermally induced borehole elongation: a case study at Soultz, France, Int. J. Rock Mech. Min. 40, 7-8, 1121–1140. [CrossRef] [Google Scholar]
  • Budiansky B., O’Connell R.J. (1976) Elastic moduli of a cracked solid, Int. J. Solids Structures 12, 81–97. [Google Scholar]
  • Calò M. (2009) Tomography of subduction zones using regional earthquakes: methodological developments and application to the Ionian slab, PhD Thesis, EOST, University of Strasbourg. [Google Scholar]
  • Calò M., Dorbath C., Cornet F.H., Cuenot N. (2011) Large-scale aseismic motion identified through 4-D P-wave tomography, Geophys. J. Int. 186, 1295–1314. [CrossRef] [Google Scholar]
  • Cornet F.H., Bérard T., Bourouis S. (2007) How close to failure is a granite rock mass at a 5 km depth?, Int. J. Rock Mech. Min. 44, 1, 47–66. [CrossRef] [Google Scholar]
  • Crampin S. (1984) Effective anisotropic elastic constants for wave propagation through cracked solids, Geophys. J. R. Astr. Soc. 76, 1, 135–145. [CrossRef] [Google Scholar]
  • Crampin S., Booth D.C. (1989) Shear-wave splitting showing hydraulic dilation and pre-existing joints in granite, Scientific Drilling 1, 21–26. [Google Scholar]
  • Cuenot N., Dorbath C., Dorbath L. (2008) Analysis of the microseismicity induced by fluid injection in the Hot Dry Rock site of Soultz-sous-Forêts (Alsace, France): implications for the characterization of the geothermal reservoir properties, Pure Appl. Geophys. 165, 797–828. [CrossRef] [Google Scholar]
  • Dezayes C., Valley B., Maqua E., Syren G., Genter A. (2000) Natural fracture system of the Soultz granite based on UBI data in the GPK3 and GPK4 wells, BRGM, Synthetic final report. contrat ENK5-2000-00301. [Google Scholar]
  • Dezayes C., Genter A., Hooijkaas G.R. (2005) Deep-seated geology and fracture system of the EGS Soultz Reservoir (France) based on recent 5 km depth boreholes, Proceedings World Geothermal Congress 2005. [Google Scholar]
  • Dezayes C., Genter A., Valley B. (2010) Structure of the low permeable naturally fractured geothermal reservoir at Soultz, C. R. Geoscience 342, 7-8, 517–530. [Google Scholar]
  • Dorbath L., Cuenot N., Genter A., Frogneux M. (2009) Seismic response of the fractured and faulted granite of Soultz-sous-Forêts (France) to 5 km deep massive water injections, Geophys. J. Int. 177, 653–675. [CrossRef] [Google Scholar]
  • Dorbath L., Evans K., Cuenot N., Valley B., Charléty J., Frogneux M. (2010) The stress field at Soultz-sous-Forêts from focal mechanisms of induced seismic events: cases of the wells GPK2 and GPK3, C. R. Geoscience 342, 7, 600–606. [CrossRef] [Google Scholar]
  • de Dreuzy J.R., Davy P., Bour O. (2002) Hydraulic properties of two-dimensional random fracture networks following power law distributions of length and aperture, Water Resources Research 38, 12, 12–21. [CrossRef] [Google Scholar]
  • Eshelby J.D. (1957) The determination of the elastic field of an ellipsoidal inclusion and related problems, Proceedings of the Royal Society of London A 241, 376–396. [MathSciNet] [Google Scholar]
  • Genter A., Traineau H. (1996) Analysis of macroscopic fractures in granite in the HDR geothermal well EPS-1, Soultz-sous-Forêts, France, J. Vol. Geoth. Res. 72, 121–141. [CrossRef] [Google Scholar]
  • Guéguen Y., Chelidze T., Le Ravalec M. (1997) Microstructures, percolation thresholds, and rock physical properties, Tectonophysics 279, 1, 23–35. [CrossRef] [Google Scholar]
  • Guéguen Y., Schubnel A. (2003) Elastic wave velocities and permeability of cracked rocks, Tectonophysics 370, 1-4, 163–176. [CrossRef] [Google Scholar]
  • Guéguen Y., Sarout J. (2011) Characteristics of anisotropy and dispersion in cracked medium, Tectonophysics 503, 1, 165–172. [CrossRef] [Google Scholar]
  • Henyey F., Pomphrey N. (1982) Self-consistent elastic moduli of a cracked solid, Geophys. Res. Lett. 9, 903–906. [CrossRef] [Google Scholar]
  • Horálek J., Jechumtálová Z., Dorbath L., Šílený J. (2010) Source mechanisms of micro-earthquakes induced in a fluid injection experiment at the HDR site Soultz-sous-Forêts (Alsace) in 2003 and their temporal and spatial variations, Geophys. J. Int. 181, 1547–1565. [Google Scholar]
  • Hudson J.A. (1980) Overall properties of a cracked solid, Mathematical Proceedings of the Cambridge Philosophical Society 88, 371–384. [CrossRef] [MathSciNet] [Google Scholar]
  • Kachanov M. (1993) Elastic solids with many cracks and related problems, Adv. Appl. Mech. 30, 259–445. [CrossRef] [Google Scholar]
  • Kachanov M., Tsukrov I., Shafiro B. (1994) Effective moduli of solids with cavities of various shapes, Appl. Mech. Rev. 47, 151–174. [CrossRef] [Google Scholar]
  • Kemeny J., Cook N.G.W. (1986) Effective moduli, non-linear deformation and strength of a cracked elastic solid, Int. J. Rock Mech. Min. 23, 2, 107–118. [CrossRef] [Google Scholar]
  • Mori T., Tanaka K. (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica 21, 5, 571–574. [CrossRef] [Google Scholar]
  • Mishra O., Zhao D. (2003) Crack density, saturation rate and porosity at the 2001 Bhuj, India, earthquake hypocenter: A fluid-driven earthquake?, Earth Planet. Sci. Lett. 212, 393–405. [CrossRef] [Google Scholar]
  • Norris A.N. (1985) A differential scheme for the effective moduli of composites, Mechanics of Materials 4, 1–16. [CrossRef] [Google Scholar]
  • Nur A. (1971) Effects of stress on velocity anisotropy in rocks with cracks, J. Geophys. Res. 76, 2022–2034. [CrossRef] [Google Scholar]
  • Powell M.J.D. (2009) The BOBYQA algorithm for bound constrained optimization without derivatives, Department of Applied Mathematics and Theoretical Physics, Cambridge England, technical report NA2009/06. [Google Scholar]
  • Sausse J., Genter A. (2005) Types of permeable fractures in granite, Geological Society, London, Special Publications 240, 1–14. [CrossRef] [Google Scholar]
  • Sausse J., Fourar M., Genter A. (2006) Permeability and alteration within the Soultz granite inferred from geophysical and flow log analysis, Geothermics 35, 5-6, 544–560. [CrossRef] [Google Scholar]
  • Sausse J., Dezayes C., Genter A., Bisset A. (2008) Characterization of fracture connectivity and fluid flow pathways derived from geological interpretation and 3D modelling of the deep seated EGS reservoir of Soultz (France), Proceedings, thirty-third workshop on Geothermal Reservoir Engineering, Stanford, California. [Google Scholar]
  • Sausse J., Dezayes C., Dorbath L., Genter A. (2010) 3D model of fracture zones at Soultz-sous-Forêts based on geological data, image logs, induced microseismicity and vertical seismic profiles, C. R. Geoscience 342, 7-8, 531–545. [Google Scholar]
  • Sayers C.M., Kachanov M. (1991) A simple technique for finding effective elastic constants of cracked solids for arbitrary crack orientation statistics, Int. J. Solids Structures 27, 6, 671–680. [CrossRef] [Google Scholar]
  • Schoenberg M., Sayers C.M. (1995) Seismic anisotropy of fractured rock, Geophysics 60, 204–211. [CrossRef] [Google Scholar]
  • Schubnel A., Nishizawa O., Masuda K., Lei X.J., Xue Z., Guéguen Y. (2003) Velocity Measurements and crack density determination during wet triaxial experiments on Oshima and Toki granites, Pure Appl. Geophys. 160, 869–887. [CrossRef] [Google Scholar]
  • Schubnel A., Benson P., Thompson B., Hazzard J., Young R. (2006) Quantifying Damage, Saturation and Anisotropy in Cracked Rocks by Inverting Elastic Wave Velocities, Pure Appl. Geophys. 163, 947–973. [CrossRef] [Google Scholar]
  • Sileny J., Plomerova J. (1996) Inversion of shear-wave splitting parameters to retrieve three-dimensional orientation of anisotropy in continental lithosphere, Phys. Earth Planet. Inter. 95, 277–292. [CrossRef] [Google Scholar]
  • Simpson G., Guéguen Y., Schneider F. (2001) Permeability enhancement due to microcrack dilatancy in the damage regime, Journal of Geophysical Research Solid Earth 106, B3, 3999–4016. [CrossRef] [Google Scholar]
  • Tarantola A. (2005) Inverse problem theory and methods for model parameter estimation, Society for Industrial and Applied Mathematics. [Google Scholar]
  • Valley B.C. (2007) The relation between natural fracturing and stress heterogeneities in deep-seated crystalline rocks at Soultz-sous-Forêts (France), PhD Thesis, Swiss Federal Institute of Technology Zurich. [Google Scholar]
  • Vecsey L., Plomerova J., Babuska V. (2008) Shear-wave splitting measurements – Problems and solutions, Tectonophys. 462, 178–196. [CrossRef] [Google Scholar]
  • Verdon J.P., Kendall J.-M., Wuestefeld A. (2009) Imaging fractures and sedimentary fabrics using shear wave splitting measurements made on passive seismic data, Geophys. J. Int. 179, 2, 1245–1254. [CrossRef] [Google Scholar]
  • Walsh J. (1965) The effect of cracks on the compressibility of rock, J. Geophys. Res. 70, 381–389. [CrossRef] [Google Scholar]
  • Weidler R., Gérard A., Baria R., Baumgärtner J., Jung R. (2002) Hydraulic and micro-seismic results of massive stimulation test at 5 km depth at the European Hot-Dry-Rock test site Soultz, France, Proceedings 27th workshop on Geothermal Reservoir Engineering, Stanford, California, USA, pp. 95–100. [Google Scholar]
  • Wiggins R.A. (1976) Interpolation of digitized curves, Bul. Seism. Soc. Am. 66, 2077–2081. [Google Scholar]
  • Wuestefeld A., Verdon J.P., Kendall J.M., Rutledge J., Clarke H., Wookey J. (2011) Inferring rock fracture evolution during reservoir stimulation from seismic anisotropy, Geophysics 76, 6, WC159-WC168. [Google Scholar]
  • Zhang H., Thurber C.H. (2003) Double-difference tomography: The method and its application to the Hayward fault, California. Bulletin of the Seismological Society of America 93, 5, 1875–1889. [CrossRef] [Google Scholar]
  • Zhao D., Mizuno T. (1999) Crack density and saturation rate in the 1995 Kobe Earthquake Region, Geophys. Res. Lett. 26, 3213–3216. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.