Dossier: Special Issue in Tribute to Yves Chauvin
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Numéro 2, March–April 2016
Dossier: Special Issue in Tribute to Yves Chauvin
Numéro d'article 19
Nombre de pages 21
DOI https://doi.org/10.2516/ogst/2015033
Publié en ligne 30 mars 2016
  • Biermann U., Bornscheuer U., Meier M.A.R., Metzger J.O., Schäfer H.J. (2011) Oils and fats as renewable raw materials in chemistry, Angewandte Chemie International Edition 50, 3854–3871. [CrossRef] [PubMed] [Google Scholar]
  • Hill K. (2000) Fats and oils as oleochemical raw materials, Pure & Applied Chemistry 72, 1255–1264. [CrossRef] [Google Scholar]
  • Winkler M., Meier M.A.R. (2014) Olefin cross-metathesis as a valuable tool for the preparation of renewable polyesters and polyamides from unsaturated fatty acid esters and carbamates, Green Chemistry 16, 3335–3340. [CrossRef] [Google Scholar]
  • Chikkali S., Mecking S. (2012) Refining of plant oils to chemicals by olefin metathesis, Angewandte Chemie International Edition 51, 5802–5808. [CrossRef] [Google Scholar]
  • Corma A., Iborra S., Velty A. (2007) Chemical routes for the transformation of biomass into chemicals, Chemical Reviews 107, 2411–2502. [CrossRef] [PubMed] [Google Scholar]
  • Deuss P.J., Barta K., de Vries J.G. (2014) Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals, Catalysis Science & Technology 4, 1174–1196. [CrossRef] [Google Scholar]
  • Montero de Espinosa L., Meier M.A.R. (2012) Olefin metathesis of renewable platform chemicals, Topics in Organometallic Chemistry 39, 1–44. [Google Scholar]
  • Marshall A.-L., Alaimo P.J. (2010) Useful products from complex starting materials: common chemicals from biomass feedstocks, Chemistry: An European Journal 16, 4970–4980. [CrossRef] [Google Scholar]
  • Vennestrøm P.N.R., Osmundsen C.M., Christensen C.H., Taarning E. (2011) Beyond petrochemicals: The renewable chemicals industry, Angewandte Chemie International Edition 50, 10502–10509. [CrossRef] [Google Scholar]
  • Gallezot P. (2012) Conversion of biomass to selected chemical products, Chemical Society Reviews 41, 1538–1558. [CrossRef] [PubMed] [Google Scholar]
  • Connon S.J., Blechert S. (2003) Recent developments in olefin cross-metathesis, Angewandte Chemie International Edition 42, 1900–1923. [CrossRef] [Google Scholar]
  • Mol J.C. (2004) Catalytic metathesis of unsaturated fatty acid esters and oils, Topics in Catalysis 27, 97–104. [CrossRef] [Google Scholar]
  • Mol J.C. (2002) Application of olefin metathesis in oleochemistry: an example of green chemistry, green chemistry 4, 5–13. [CrossRef] [Google Scholar]
  • Bruneau C., Fischmeister C., Miao X., Malacea R., Dixneuf P.H. (2010) Cross-metathesis with acrylonitrile and applications to fatty acid derivatives, European Journal of Lipid Science and Technology 112, 3–9. [CrossRef] [Google Scholar]
  • Miao X., Dixneuf P.H., Fischmeister C., Bruneau C. (2011) A green route to nitrogen-containing groups: the acrylonitrile cross-metathesis and applications to plant oils derivatives, Green Chemistry 13, 2258–2271. [CrossRef] [Google Scholar]
  • Rybak A., Meier M.A.R. (2007) Cross-metathesis of fatty acid derivatives with methyl acrylate: renewable raw materials for the chemical industry, Green Chemistry 9, 1356–1361. [CrossRef] [Google Scholar]
  • Rybak A., Meier M.A.R. (2008) Cross-metathesis of oleyl alcohol with methyl acrylate: optimization of reaction conditions and comparison of their environmental impact, Green Chemistry 10, 1099–1104. [CrossRef] [Google Scholar]
  • Bilel H., Hamdi N., Zagrouba F., Fischmeister C., Bruneau C. (2011) Cross-metathesis transformations of terpenoids in dialkyl carbonate solvents, Green Chemistry 13, 1448–1452. [CrossRef] [Google Scholar]
  • Yadav G.D., Doshi N.S. (2002) Development of a green process for poly-α-olefin based lubricants, Green Chemistry 4, 528–540. [CrossRef] [Google Scholar]
  • Warwel S., Tillack J., Demes C., Kunz M. (2001) Polyesters of ω-Unsaturated Fatty Acid Derivatives, Macromolecular Chemistry and Physics 202, 1114–1121. [CrossRef] [Google Scholar]
  • van Dam P.B., Mittlmeijer M.C., Boelhouwer C. (1972) Metathesis of unsaturated fatty acid esters by a homogeneous tungsten hexachloride–tetramethyltin catalyst, Journal of the Chemical Society, Chemical Communications 1221–1222. [CrossRef] [Google Scholar]
  • Verkuijlen E., Kapteijn F., Mol J.C., Boelhouwer C. (1977) Heterogeneous metathesis of unsaturated fatty acid esters, Journal of the Chemical Society, Chemical Communications 198–199. [CrossRef] [Google Scholar]
  • Bosma R.H.A., van Aardweg F., Mol J.C. (1981) Cometathesis of methyl oleate and ethylene; a direct route to methyl dec-9-enoate, Journal of the Chemical Society, Chemical Communications 1132–1133. [CrossRef] [Google Scholar]
  • Newman T.H., Rand C.L., Burdett K.A., Maughon B.R., Morrison D.L., Wasserman E.P., WO02/076920. [Google Scholar]
  • Grubbs R.H., Nguyen S.-B.T, Johnson L.K., Hillmyer M.A., Fu G.C., WO96/04289. [Google Scholar]
  • Thurier C., Olivier-Bourbigou H., Dixneuf P.H., Hillion G., EP1698686, US 2006/0079704. [Google Scholar]
  • Burdett K.A., Harris L.D., Margl P., Maughon B.R., Mokhtar-Zadeh T., Saucier P.C., Wasserman E.P. (2004) Renewable Monomer Feedstocks via Olefin Metathesis: Fundamental Mechanistic Studies of Methyl Oleate Ethenolysis with the First-Generation Grubbs Catalyst, Organometallics 23, 2027–2047. [CrossRef] [Google Scholar]
  • Chauvin Y., Gilbert B., Guibard I. (1990) Catalytic dimerization of alkenes by nickel complexes in organochloroaluminate molten salts, Journal of the Chemical Society, Chemical Communications 1715–1716. [CrossRef] [Google Scholar]
  • Olivier-Bourbigou H., Magna L. (2002) Ionic liquids: perspectives for organic and catalytic reactions, Journal of Molecular Catalysis A: Chemical 182, 419–437. [CrossRef] [Google Scholar]
  • Zhao D., Wu M., Kou Y., Min E. (2002) Ionic liquids: applications in catalysis, Catalysis Today 74, 157–189. [CrossRef] [Google Scholar]
  • Welton T. (2004) Ionic liquids in catalysis, Coordination Chemistry Reviews 248, 2459–2477. [CrossRef] [Google Scholar]
  • Pârvulescu V.I., Hardacre C. (2007) Catalysis in Ionic Liquids, Chemistry Reviews 107, 2615–2665. [CrossRef] [Google Scholar]
  • Chauvin Y., Olivier-Bourbigou H. (1995) Nonaqueous ionic liquids as reaction solvents, Chemtech 25, 26. [Google Scholar]
  • Gürtler C., Jautelat M., EP1035093A2. [Google Scholar]
  • Buijsman R.C., van Vuuren E., Sterrenburg J.G. (2001) Ruthenium-Catalyzed Olefin Metathesis in Ionic Liquids, Organic Letters 3, 3785–3787. [CrossRef] [PubMed] [Google Scholar]
  • Mayo K.G., Nearhoof E.H., Kiddle J.J. (2002) Microwave-Accelerated Ruthenium-Catalyzed Olefin Metathesis, Organic Letters 4, 1567–1570. [CrossRef] [PubMed] [Google Scholar]
  • Ding X., Lv X., Hui B., Chen Z., Xiao M., Guo B., Tang W. (2006) Olefin self-cross-metathesis catalyzed by the second-generation Grubbs carbene complex in room temperature ionic liquids, Tetrahedron Letters 47, 2921–2924. [CrossRef] [Google Scholar]
  • Williams D.B.G., Ajam M., Ranwell A. (2006) Highly Selective Metathesis of 1-Octene in Ionic Liquids, Organometallics 25, 3088–3090. [CrossRef] [Google Scholar]
  • Sémeril D., Olivier-Bourbigou H., Bruneau C., Dixneuf P.H. (2002) Alkene metathesis catalysis in ionic liquids with ruthenium allenylidene salts, Chemical Communications 146–147. [CrossRef] [Google Scholar]
  • Csihony S., Fischmeister C., Bruneau C., Horvath I.T., Dixneuf P.H. (2002) First ring-opening metathesis polymerization in an ionic liquid, Efficient recycling of a catalyst generated from a cationic ruthenium allenylidene complex, New Journal of Chemistry 26, 1667–1670. [CrossRef] [Google Scholar]
  • Thurier C., Fischmeister C., Bruneau C., Olivier-Bourbigou H., Dixneuf P.H. (2007) Ionic imidazolium containing ruthenium complexes and olefin metathesis in ionic liquids, Journal of Molecular Catalysis A: Chemistry 268, 127–133. [CrossRef] [Google Scholar]
  • Thurier C., Fischmeister C., Bruneau C., Olivier-Bourbigou H., Dixneuf P.H. (2008) Ethenolysis of Methyl Oleate in Room-Temperature Ionic Liquids, ChemSusChem 1, 118–122. [CrossRef] [PubMed] [Google Scholar]
  • Ackermann L., Bruneau C., Dixneuf P.H. (2001) Simple new three-component catalytic system for enyne metathesis, Synlett 397–399. [Google Scholar]
  • Sémeril D., Bruneau C., Dixneuf P.H. (2002) Imidazolium and Imidazolinium Salts as Carbene Precursors or Solvent for Ruthenium-Catalysed Diene and Enyne Metathesis, Advanced Synthesis & Catalysis 344, 585–595. [CrossRef] [Google Scholar]
  • Crowe W.E., Goldberg D.R. (1995) Acrylonitrile Cross-Metathesis: Coaxing Olefin Metathesis Reactivity from a Reluctant Substrate, Journal of the American Chemical Society 117, 5162–5163. [CrossRef] [Google Scholar]
  • Gessler S., Randl S., Blechert S. (2000) Synthesis and metathesis reactions of a phosphine-free dihydroimidazole carbene ruthenium complex, Tetrahedron Letters 41, 9973–9976. [CrossRef] [Google Scholar]
  • Love J.A., Morgan J.P., Trnka T.M., Grubbs R.H. (2002) A Practical and Highly Active Ruthenium-Based Catalyst that Effects the Cross-metathesis of Acrylonitrile, Angewandte Chemie International Edition 41, 4035–4037. [CrossRef] [Google Scholar]
  • Hoveyda H., Vezina M. (2005) Synthesis of Unsaturated Amino Alcohols through Unexpectedly Selective Ru-Catalyzed Cross-Metathesis Reactions, Organic Letters 7, 2113–2116. [CrossRef] [PubMed] [Google Scholar]
  • Bieniek M., Bujok R., Cabaj M., Lugan N., Lavigne G., Arlt D., Grela K. (2006) Advanced Fine-Tuning of Grubbs/Hoveyda Olefin Metathesis Catalysts: A Further Step toward an Optimum Balance between Antinomic Properties, Journal of the American Chemical Society 128, 13562–13564. [CrossRef] [Google Scholar]
  • Michaut A., Boddaert T., Coquerel Y., Rodriguez J. (2007) Reluctant cross-metathesis reactions: The highly beneficial effect of microwave irradiation, Synlett 2867–2871. [Google Scholar]
  • Rivard M., Blechert S. (2003) Effective and Inexpensive Acrylonitrile Cross-Metathesis: Utilisation of Grubbs II Precatalyst in the Presence of Copper(I) Chloride, European Journal of Organic Chemistry 2225–2228. [CrossRef] [Google Scholar]
  • Malacea R., Fischmeister C., Bruneau C., Dubois J.-L., Couturier J.-L., Dixneuf P.H. (2009) Renewable materials as precursors of linear nitrile-acid derivatives via cross-metathesis of fatty esters and acids with acrylonitrile and fumaronitrile, Green Chemistry 11, 152–155. [CrossRef] [Google Scholar]
  • Miao X., Malacea R., Fischmeister C., Bruneau C., Dixneuf P.H. (2011) Ruthenium–alkylidene catalysed cross-metathesis of fatty acid derivatives with acrylonitrile and methyl acrylate: a key step toward long-chain bifunctional and amino acid compounds, Green Chemistry 13, 2911–2919. [CrossRef] [Google Scholar]
  • Fabritius D., Schäfer H.J., Steinbüchel A. (1998) Bioconversion of sunflower oil, rapeseed oil and ricinoleic acid by Candida tropicalis M25, Applied Microbiology and Biotechnology 50, 573–578. [CrossRef] [Google Scholar]
  • Dinger M.B., Mol J.C. (2002) High Turnover Numbers with Ruthenium-Based Metathesis Catalysts, Advanced Synthesis & Catalysis 344, 671–677. [CrossRef] [Google Scholar]
  • Ngo H.L., Jones K., Foglia T.A. (2006) Journal of the American Oil Chemists’ Society 83, 629–634. [CrossRef] [Google Scholar]
  • Marvey B.B., Segakweng C.K., Vosloo M.H.C. (2008) Ruthenium Carbene Mediated Metathesis of Oleate-Type Fatty Compounds, International Journal of Molecular Sciences 9, 615–625. [CrossRef] [PubMed] [Google Scholar]
  • Takemoto S., Kawamura H., Yamada Y., Okada T., Ono A., Yoshikawa E., Mizobe Y., Hidai M. (2002) Ruthenium Complexes Containing Bis(diarylamido)/Thioether Ligands: Synthesis and their Catalysis for the Hydrogenation of Benzonitrile, Organometallics 21, 3897–3904. [CrossRef] [Google Scholar]
  • Li T., Bergner I., Haque F.N., Iuliis M.Z.-D., Song D., Morris R.H. (2007) Hydrogenation of Benzonitrile to Benzylamine Catalyzed by Ruthenium Hydride Complexes with P−NH−NH−P Tetradentate Ligands: Evidence for a Hydridic−Protonic Outer Sphere Mechanism, Organometallics 26, 5940–5949. [CrossRef] [Google Scholar]
  • Das S., Zhou S., Addis D., Enthaler S., Junge K., Beller M. (2010) Selective catalytic reductions of amides and nitriles to amines, Topics in Catalysis 53, 979–984. [CrossRef] [Google Scholar]
  • Enthaler S., Junge K., Addis D., Erre G., Beller M. (2008) A practical and benign synthesis of primary amines through ruthenium-catalyzed reduction of nitriles, ChemSusChem 1, 1006–1010. [CrossRef] [PubMed] [Google Scholar]
  • Enthaler S., Addis D., Junge K., Erre G., Beller M. (2008) A practical and benign synthesis of primary amines through ruthenium-catalyzed reduction of nitriles, Chemistry: an, European Journal 14, 9491–9494. [CrossRef] [Google Scholar]
  • Addis D., Enthaler S., Junge K., Wendt B., Beller M. (2009) Ruthenium N-heterocyclic carbene catalysts for selective reduction of nitriles to primary amines, Tetrahedron Letters 50, 3654–3656. [CrossRef] [Google Scholar]
  • Miao X., Fischmeister C., Dixneuf P.H., Bruneau C., Dubois J.-L., Couturier J.-L. (2012) Tandem Catalytic Acrylonitrile Cross-Metathesis and Hydrogenation of Nitriles with Ruthenium Catalysts: Direct Access to Linear α, ω-Aminoesters from Renewables, ChemSusChem 5, 1410–1414. [CrossRef] [PubMed] [Google Scholar]
  • Couturier J.-L., Dubois J.-L., Miao X., Fischmeister C., Bruneau C., Dixneuf P.H. (2011) Brevet: FR 2959742A120111111; PCT Int. Appl., WO 2011138051A1 20111110. [Google Scholar]
  • Bielawski C.W., Louie J., Grubbs R.H. (2000) Tandem Catalysis: Three Mechanistically Distinct Reactions from a Single Ruthenium Complex, Journal of the American Chemical Society 122, 12872–12873. [CrossRef] [Google Scholar]
  • Watson M.D., Wagener K.B. (2000) Tandem Homogeneous Metathesis/Heterogeneous Hydrogenation: Preparing Model Ethylene/CO2 and Ethylene/CO Copolymers, Macromolecules 33, 3196–3201. [CrossRef] [Google Scholar]
  • Drouin S.D., Zamanian F., Fogg D.E. (2001) Multiple Tandem Catalysis: Facile Cycling between Hydrogenation and Metathesis Chemistry, Organometallics 20, 5495–5497. [CrossRef] [Google Scholar]
  • Miao X., Bidange J., Dixneuf P.H., Fischmeister C., Bruneau C., Dubois J.-L., Couturier J.-L. (2012) Ruthenium-benzylidenes and -indenylidenes as efficient catalysts for the hydrogenation of aliphatic nitriles into primary amines, ChemCatChem 4, 1911–1916. [CrossRef] [Google Scholar]
  • Ho T.T.T., Jacobs T., Meier M.A.R. (2009) A Design-of-Experiments Approach for the Optimization and Understanding of the Cross-Metathesis Reaction of Methyl Ricinoleate with Methyl Acrylate, ChemSusChem 2, 749–754. [CrossRef] [PubMed] [Google Scholar]
  • Behr A., Perez Gomes J., Bayrak Z. (2011) Cross-metathesis of methyl 10-undecenoate with diethyl maleate: Formation of an α, ϖ-diester via a metathesis reaction network, European Journal of Lipid Science and Technology 113, 189–196. [CrossRef] [Google Scholar]
  • Djigoué G.B., Meier M.A.R. (2009) Improving the selectivity for the synthesis of two renewable platform chemicals via olefin metathesis, Applied Catalysis A 368, 158–162. [CrossRef] [Google Scholar]
  • Dubois J.-L., Gillet J.-P. (2008) Procédé de co-production de carbonates cycliques et de nitriles et/ou d’amines gras, Patent WO2008145941A9. [Google Scholar]
  • Chauvel A., Lefebvre G. (1989) Petrochemical Processes, Editions Technip 2, 274. [Google Scholar]
  • Miao X., Fischmeister C., Dixneuf P.H., Bruneau C., Dubois J.-L., Couturier J.-L. (2012) Polyamide precursors from renewable 10-undecenenitrile and methyl acrylate via olefin cross-metathesis, Green Chemistry 14, 2179–2183. [CrossRef] [Google Scholar]
  • Das G., Trivedi R.K., Vasishtha A.K. (1989) Heptaldehyde and undecylenic acid from castor oil, Journal of the American Oil Chemists’ Society 66, 938–941. [CrossRef] [Google Scholar]
  • van der Steen M., Stevens C.V., Eeckhout Y., De Buyck L., Ghelfi F., Roncaglia F. (2008) Undecylenic acid: A valuable renewable building block on route to Tyromycin A derivatives, European Journal of Lipid Science and Technology 110, 846–852. [CrossRef] [Google Scholar]
  • van der Steen M., Stevens C.V. (2009) Undecylenic Acid: A Valuable and Physiologically Active Renewable Building Block from Castor Oil, ChemSusChem 8, 692–713. [CrossRef] [Google Scholar]
  • Mutlu H., Meier M.A.R. (2010) Castor oil as a renewable resource for the chemical industry, European Journal of Lipid Science and Technology 112, 10–30. [CrossRef] [Google Scholar]
  • Miao X., Fischmeister C., Bruneau C., Dixneuf P.H. (2009) A direct route to bifunctional aldehyde derivatives via self- and cross-metathesis of unsaturated aldehydes, ChemSusChem 2, 542–545. [CrossRef] [PubMed] [Google Scholar]
  • Bidange J., Fischmeister C., Bruneau C., Dubois J.-L., Couturier J.-L. (2015) Cross-metathesis of bio-sourced fatty nitriles with acrylonitrile, Monatshefte für Chemie 146, 1107–1113. [CrossRef] [Google Scholar]
  • Fischmeister C., Bruneau C. (2011) Ene-yne cross-metathesis with ruthenium carbene catalysts, Beilstein Journal of Organic Chemistry 7, 156–166. [CrossRef] [PubMed] [Google Scholar]
  • Le Ravalec V., Fischmeister C., Bruneau C. (2009) First transformation of unsaturated fatty esters involving enyne cross-metathesis, Advanced Synthesis and Catalysis 351, 1115–1122. [CrossRef] [Google Scholar]
  • Miao X., Fischmeister C., Bruneau C., Dixneuf P.H. (2008) Dimethyl Carbonate: An Eco-Friendly Solvent in Ruthenium-Catalyzed Olefin Metathesis Transformations, ChemSusChem 1, 813–816. [CrossRef] [PubMed] [Google Scholar]
  • Le Ravalec V., Dupé A., Fischmeister C., Bruneau C. (2010) Improving sustainability in ene-yne cross-metathesis for transformation of unsaturated fatty esters, ChemSusChem 3, 1291–1297. [CrossRef] [PubMed] [Google Scholar]
  • Kotha S., Meshram M., Tiwari A. (2009) Advanced approach to polycyclics by a synergistic combination of enyne metathesis and Diels Alder reaction, Chemical Society Reviews 38, 2065–2092. [CrossRef] [PubMed] [Google Scholar]
  • Dupé A., Le Ravalec V., Fischmeister C., Bruneau C. (2013) Stepwise catalytic transformations of renewable feedstock arising from plant oils, European Journal of Lipid Science and Technology 115, 490–500. [CrossRef] [Google Scholar]
  • Zhang H.-J., Demerseman B., Toupet L., Xi Z., Bruneau C. (2008) Novel [Ru(C5Me4R)(2-quinolinecarboxylato)(allyl)][PF6] Complexes as Efficient Catalysts for Highly Regioselective Nucleophilic Substitution of Aliphatic Allylic Substrates, Advanced Synthesis & Catalysis 350, 1601–1609. [CrossRef] [PubMed] [Google Scholar]
  • Biermann U., Bornscheuer U., Meier M.A.R., Metzger J.O., Schäfer H.J. (2011) Oils and Fats as Renewable Raw materials in Chemistry, Angewandte Chemie International Edition 50, 3854–3871. [CrossRef] [PubMed] [Google Scholar]
  • Dupé A., Achard M., Fischmeister C., Bruneau C. (2012) Methyl ricinoleate as platform chemical for simultaneous production of fine chemicals and polymer precursors, ChemSusChem 5, 2249–2254. [CrossRef] [PubMed] [Google Scholar]
  • Behr A., Toslu N. (1999) One-and two-phase reaction engineering of the hydrosilylation reaction, Chemie- Ingenieur Technik 71, 490–493. [CrossRef] [Google Scholar]
  • Huang S., Bilel H., Zagrouba F., Hamdi N., Bruneau C., Fischmeister C. (2015) Olefin metathesis transformations in thermomorphic multicomponent solvent system, Catalysis Communications 63, 31–34. [CrossRef] [Google Scholar]
  • Yoshikai K., Hayama T., Nishimura K., Yamada K.I., Tomioka K. (2005) Thiol-catalyzed acyl radical cyclization of alkenals, Journal of Organic Chemistry 70, 681–683. [CrossRef] [Google Scholar]
  • Gutierrez S., Tlenkopatchev M.A. (2011) Metathesis of renewable products: degradation of natural rubber via cross-metathesis with β-pinene using Ru-alkylidene catalysts, Polymer Bulletin 66, 1029–1038. [CrossRef] [Google Scholar]
  • Borré E., Dinh T.H., Caijo F., Crévisy C., Mauduit M. (2011) Terpenic compounds as renewable sources of raw materials for cross-metathesis, Synthesis 2125–2130. [Google Scholar]
  • Hanessian S., Dhanoa D.S., Beaulieu P.L. (1987) Synthesis of carbocycles from ω-substituted α, β-unsaturated esters via radical-induced cyclizations, Canadian Journal of Chemistry 65, 1859–1866. [CrossRef] [Google Scholar]
  • Brown R.T., Mayalarp S.P., Watts J. (1997) Synthesis of methyl secolonitoside, Journal of the Chemical Society, Perkin Transactions 1, 1633–1637. [CrossRef] [Google Scholar]
  • Yamagushi K., Shinohara C., Kojima S., Sodeoka M., Tsuji T. (1999) (2E,6R)-8-Hydroxy-2,6-dimethyl-2-octenoic Acid, a Novel Anti-osteoporotic Monoterpene Isolated from Cistanche salsa, Bioscience Biotechnology, Biochemistry 63, 731–735. [Google Scholar]
  • Zhang Z., Chen J., Yang Z., Tang Y. (2010) Rapid Biomimetic Total Synthesis of (±)-Rossinone B, Organic Letters 12, 5554–5557. [CrossRef] [PubMed] [Google Scholar]
  • Zhao Y.-J., Loh T.-P. (2008) Practical synthesis of 1,5-dimethyl substituted conjugated polyenes from geranyl acetate, Tetrahedron 64, 4972–4978. [CrossRef] [Google Scholar]
  • Bilel H., Hamdi N., Zagrouba F., Fischmeister C., Bruneau C. (2012) Eugenol as a renewable feedstock for the production of polyfunctional alkenes via olefin cross-metathesis, RSC Advances 2, 9584–9589. [CrossRef] [Google Scholar]
  • Beydoun K., Zhang H.-J., Sundararaju B., Demerseman B., Achard M., Xi Z., Bruneau C. (2009) Efficient ruthenium-catalyzed synthesis of [3]-dendralenes from 1,3-dienic allylic carbonates, Chemical Communications 6580–6582. [CrossRef] [Google Scholar]
  • Bilel H., Hamdi N., Zagrouba Z., Fischmeister C., Bruneau C. (2014) Terminal conjugated dienes via a ruthenium-catalyzed cross-metathesis/elimination sequence: application to renewable resources, Catalysis Science & Technology 4, 2064–2071. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.