Dossier: Special Issue in Tribute to Yves Chauvin
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 2, March–April 2016
Dossier: Special Issue in Tribute to Yves Chauvin
Article Number 19
Number of page(s) 21
DOI https://doi.org/10.2516/ogst/2015033
Published online 30 March 2016
  • Biermann U., Bornscheuer U., Meier M.A.R., Metzger J.O., Schäfer H.J. (2011) Oils and fats as renewable raw materials in chemistry, Angewandte Chemie International Edition 50, 3854–3871. [CrossRef] [PubMed] [Google Scholar]
  • Hill K. (2000) Fats and oils as oleochemical raw materials, Pure & Applied Chemistry 72, 1255–1264. [CrossRef] [Google Scholar]
  • Winkler M., Meier M.A.R. (2014) Olefin cross-metathesis as a valuable tool for the preparation of renewable polyesters and polyamides from unsaturated fatty acid esters and carbamates, Green Chemistry 16, 3335–3340. [CrossRef] [Google Scholar]
  • Chikkali S., Mecking S. (2012) Refining of plant oils to chemicals by olefin metathesis, Angewandte Chemie International Edition 51, 5802–5808. [CrossRef] [Google Scholar]
  • Corma A., Iborra S., Velty A. (2007) Chemical routes for the transformation of biomass into chemicals, Chemical Reviews 107, 2411–2502. [CrossRef] [PubMed] [Google Scholar]
  • Deuss P.J., Barta K., de Vries J.G. (2014) Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals, Catalysis Science & Technology 4, 1174–1196. [CrossRef] [Google Scholar]
  • Montero de Espinosa L., Meier M.A.R. (2012) Olefin metathesis of renewable platform chemicals, Topics in Organometallic Chemistry 39, 1–44. [Google Scholar]
  • Marshall A.-L., Alaimo P.J. (2010) Useful products from complex starting materials: common chemicals from biomass feedstocks, Chemistry: An European Journal 16, 4970–4980. [CrossRef] [Google Scholar]
  • Vennestrøm P.N.R., Osmundsen C.M., Christensen C.H., Taarning E. (2011) Beyond petrochemicals: The renewable chemicals industry, Angewandte Chemie International Edition 50, 10502–10509. [CrossRef] [Google Scholar]
  • Gallezot P. (2012) Conversion of biomass to selected chemical products, Chemical Society Reviews 41, 1538–1558. [CrossRef] [PubMed] [Google Scholar]
  • Connon S.J., Blechert S. (2003) Recent developments in olefin cross-metathesis, Angewandte Chemie International Edition 42, 1900–1923. [CrossRef] [Google Scholar]
  • Mol J.C. (2004) Catalytic metathesis of unsaturated fatty acid esters and oils, Topics in Catalysis 27, 97–104. [CrossRef] [Google Scholar]
  • Mol J.C. (2002) Application of olefin metathesis in oleochemistry: an example of green chemistry, green chemistry 4, 5–13. [CrossRef] [Google Scholar]
  • Bruneau C., Fischmeister C., Miao X., Malacea R., Dixneuf P.H. (2010) Cross-metathesis with acrylonitrile and applications to fatty acid derivatives, European Journal of Lipid Science and Technology 112, 3–9. [CrossRef] [Google Scholar]
  • Miao X., Dixneuf P.H., Fischmeister C., Bruneau C. (2011) A green route to nitrogen-containing groups: the acrylonitrile cross-metathesis and applications to plant oils derivatives, Green Chemistry 13, 2258–2271. [CrossRef] [Google Scholar]
  • Rybak A., Meier M.A.R. (2007) Cross-metathesis of fatty acid derivatives with methyl acrylate: renewable raw materials for the chemical industry, Green Chemistry 9, 1356–1361. [CrossRef] [Google Scholar]
  • Rybak A., Meier M.A.R. (2008) Cross-metathesis of oleyl alcohol with methyl acrylate: optimization of reaction conditions and comparison of their environmental impact, Green Chemistry 10, 1099–1104. [CrossRef] [Google Scholar]
  • Bilel H., Hamdi N., Zagrouba F., Fischmeister C., Bruneau C. (2011) Cross-metathesis transformations of terpenoids in dialkyl carbonate solvents, Green Chemistry 13, 1448–1452. [CrossRef] [Google Scholar]
  • Yadav G.D., Doshi N.S. (2002) Development of a green process for poly-α-olefin based lubricants, Green Chemistry 4, 528–540. [CrossRef] [Google Scholar]
  • Warwel S., Tillack J., Demes C., Kunz M. (2001) Polyesters of ω-Unsaturated Fatty Acid Derivatives, Macromolecular Chemistry and Physics 202, 1114–1121. [CrossRef] [Google Scholar]
  • van Dam P.B., Mittlmeijer M.C., Boelhouwer C. (1972) Metathesis of unsaturated fatty acid esters by a homogeneous tungsten hexachloride–tetramethyltin catalyst, Journal of the Chemical Society, Chemical Communications 1221–1222. [CrossRef] [Google Scholar]
  • Verkuijlen E., Kapteijn F., Mol J.C., Boelhouwer C. (1977) Heterogeneous metathesis of unsaturated fatty acid esters, Journal of the Chemical Society, Chemical Communications 198–199. [CrossRef] [Google Scholar]
  • Bosma R.H.A., van Aardweg F., Mol J.C. (1981) Cometathesis of methyl oleate and ethylene; a direct route to methyl dec-9-enoate, Journal of the Chemical Society, Chemical Communications 1132–1133. [CrossRef] [Google Scholar]
  • Newman T.H., Rand C.L., Burdett K.A., Maughon B.R., Morrison D.L., Wasserman E.P., WO02/076920. [Google Scholar]
  • Grubbs R.H., Nguyen S.-B.T, Johnson L.K., Hillmyer M.A., Fu G.C., WO96/04289. [Google Scholar]
  • Thurier C., Olivier-Bourbigou H., Dixneuf P.H., Hillion G., EP1698686, US 2006/0079704. [Google Scholar]
  • Burdett K.A., Harris L.D., Margl P., Maughon B.R., Mokhtar-Zadeh T., Saucier P.C., Wasserman E.P. (2004) Renewable Monomer Feedstocks via Olefin Metathesis: Fundamental Mechanistic Studies of Methyl Oleate Ethenolysis with the First-Generation Grubbs Catalyst, Organometallics 23, 2027–2047. [CrossRef] [Google Scholar]
  • Chauvin Y., Gilbert B., Guibard I. (1990) Catalytic dimerization of alkenes by nickel complexes in organochloroaluminate molten salts, Journal of the Chemical Society, Chemical Communications 1715–1716. [CrossRef] [Google Scholar]
  • Olivier-Bourbigou H., Magna L. (2002) Ionic liquids: perspectives for organic and catalytic reactions, Journal of Molecular Catalysis A: Chemical 182, 419–437. [CrossRef] [Google Scholar]
  • Zhao D., Wu M., Kou Y., Min E. (2002) Ionic liquids: applications in catalysis, Catalysis Today 74, 157–189. [CrossRef] [Google Scholar]
  • Welton T. (2004) Ionic liquids in catalysis, Coordination Chemistry Reviews 248, 2459–2477. [CrossRef] [Google Scholar]
  • Pârvulescu V.I., Hardacre C. (2007) Catalysis in Ionic Liquids, Chemistry Reviews 107, 2615–2665. [CrossRef] [Google Scholar]
  • Chauvin Y., Olivier-Bourbigou H. (1995) Nonaqueous ionic liquids as reaction solvents, Chemtech 25, 26. [Google Scholar]
  • Gürtler C., Jautelat M., EP1035093A2. [Google Scholar]
  • Buijsman R.C., van Vuuren E., Sterrenburg J.G. (2001) Ruthenium-Catalyzed Olefin Metathesis in Ionic Liquids, Organic Letters 3, 3785–3787. [CrossRef] [PubMed] [Google Scholar]
  • Mayo K.G., Nearhoof E.H., Kiddle J.J. (2002) Microwave-Accelerated Ruthenium-Catalyzed Olefin Metathesis, Organic Letters 4, 1567–1570. [CrossRef] [PubMed] [Google Scholar]
  • Ding X., Lv X., Hui B., Chen Z., Xiao M., Guo B., Tang W. (2006) Olefin self-cross-metathesis catalyzed by the second-generation Grubbs carbene complex in room temperature ionic liquids, Tetrahedron Letters 47, 2921–2924. [CrossRef] [Google Scholar]
  • Williams D.B.G., Ajam M., Ranwell A. (2006) Highly Selective Metathesis of 1-Octene in Ionic Liquids, Organometallics 25, 3088–3090. [CrossRef] [Google Scholar]
  • Sémeril D., Olivier-Bourbigou H., Bruneau C., Dixneuf P.H. (2002) Alkene metathesis catalysis in ionic liquids with ruthenium allenylidene salts, Chemical Communications 146–147. [CrossRef] [Google Scholar]
  • Csihony S., Fischmeister C., Bruneau C., Horvath I.T., Dixneuf P.H. (2002) First ring-opening metathesis polymerization in an ionic liquid, Efficient recycling of a catalyst generated from a cationic ruthenium allenylidene complex, New Journal of Chemistry 26, 1667–1670. [CrossRef] [Google Scholar]
  • Thurier C., Fischmeister C., Bruneau C., Olivier-Bourbigou H., Dixneuf P.H. (2007) Ionic imidazolium containing ruthenium complexes and olefin metathesis in ionic liquids, Journal of Molecular Catalysis A: Chemistry 268, 127–133. [CrossRef] [Google Scholar]
  • Thurier C., Fischmeister C., Bruneau C., Olivier-Bourbigou H., Dixneuf P.H. (2008) Ethenolysis of Methyl Oleate in Room-Temperature Ionic Liquids, ChemSusChem 1, 118–122. [CrossRef] [PubMed] [Google Scholar]
  • Ackermann L., Bruneau C., Dixneuf P.H. (2001) Simple new three-component catalytic system for enyne metathesis, Synlett 397–399. [Google Scholar]
  • Sémeril D., Bruneau C., Dixneuf P.H. (2002) Imidazolium and Imidazolinium Salts as Carbene Precursors or Solvent for Ruthenium-Catalysed Diene and Enyne Metathesis, Advanced Synthesis & Catalysis 344, 585–595. [CrossRef] [Google Scholar]
  • Crowe W.E., Goldberg D.R. (1995) Acrylonitrile Cross-Metathesis: Coaxing Olefin Metathesis Reactivity from a Reluctant Substrate, Journal of the American Chemical Society 117, 5162–5163. [CrossRef] [Google Scholar]
  • Gessler S., Randl S., Blechert S. (2000) Synthesis and metathesis reactions of a phosphine-free dihydroimidazole carbene ruthenium complex, Tetrahedron Letters 41, 9973–9976. [CrossRef] [Google Scholar]
  • Love J.A., Morgan J.P., Trnka T.M., Grubbs R.H. (2002) A Practical and Highly Active Ruthenium-Based Catalyst that Effects the Cross-metathesis of Acrylonitrile, Angewandte Chemie International Edition 41, 4035–4037. [CrossRef] [Google Scholar]
  • Hoveyda H., Vezina M. (2005) Synthesis of Unsaturated Amino Alcohols through Unexpectedly Selective Ru-Catalyzed Cross-Metathesis Reactions, Organic Letters 7, 2113–2116. [CrossRef] [PubMed] [Google Scholar]
  • Bieniek M., Bujok R., Cabaj M., Lugan N., Lavigne G., Arlt D., Grela K. (2006) Advanced Fine-Tuning of Grubbs/Hoveyda Olefin Metathesis Catalysts: A Further Step toward an Optimum Balance between Antinomic Properties, Journal of the American Chemical Society 128, 13562–13564. [CrossRef] [Google Scholar]
  • Michaut A., Boddaert T., Coquerel Y., Rodriguez J. (2007) Reluctant cross-metathesis reactions: The highly beneficial effect of microwave irradiation, Synlett 2867–2871. [Google Scholar]
  • Rivard M., Blechert S. (2003) Effective and Inexpensive Acrylonitrile Cross-Metathesis: Utilisation of Grubbs II Precatalyst in the Presence of Copper(I) Chloride, European Journal of Organic Chemistry 2225–2228. [CrossRef] [Google Scholar]
  • Malacea R., Fischmeister C., Bruneau C., Dubois J.-L., Couturier J.-L., Dixneuf P.H. (2009) Renewable materials as precursors of linear nitrile-acid derivatives via cross-metathesis of fatty esters and acids with acrylonitrile and fumaronitrile, Green Chemistry 11, 152–155. [CrossRef] [Google Scholar]
  • Miao X., Malacea R., Fischmeister C., Bruneau C., Dixneuf P.H. (2011) Ruthenium–alkylidene catalysed cross-metathesis of fatty acid derivatives with acrylonitrile and methyl acrylate: a key step toward long-chain bifunctional and amino acid compounds, Green Chemistry 13, 2911–2919. [CrossRef] [Google Scholar]
  • Fabritius D., Schäfer H.J., Steinbüchel A. (1998) Bioconversion of sunflower oil, rapeseed oil and ricinoleic acid by Candida tropicalis M25, Applied Microbiology and Biotechnology 50, 573–578. [CrossRef] [Google Scholar]
  • Dinger M.B., Mol J.C. (2002) High Turnover Numbers with Ruthenium-Based Metathesis Catalysts, Advanced Synthesis & Catalysis 344, 671–677. [CrossRef] [Google Scholar]
  • Ngo H.L., Jones K., Foglia T.A. (2006) Journal of the American Oil Chemists’ Society 83, 629–634. [CrossRef] [Google Scholar]
  • Marvey B.B., Segakweng C.K., Vosloo M.H.C. (2008) Ruthenium Carbene Mediated Metathesis of Oleate-Type Fatty Compounds, International Journal of Molecular Sciences 9, 615–625. [CrossRef] [PubMed] [Google Scholar]
  • Takemoto S., Kawamura H., Yamada Y., Okada T., Ono A., Yoshikawa E., Mizobe Y., Hidai M. (2002) Ruthenium Complexes Containing Bis(diarylamido)/Thioether Ligands: Synthesis and their Catalysis for the Hydrogenation of Benzonitrile, Organometallics 21, 3897–3904. [CrossRef] [Google Scholar]
  • Li T., Bergner I., Haque F.N., Iuliis M.Z.-D., Song D., Morris R.H. (2007) Hydrogenation of Benzonitrile to Benzylamine Catalyzed by Ruthenium Hydride Complexes with P−NH−NH−P Tetradentate Ligands: Evidence for a Hydridic−Protonic Outer Sphere Mechanism, Organometallics 26, 5940–5949. [CrossRef] [Google Scholar]
  • Das S., Zhou S., Addis D., Enthaler S., Junge K., Beller M. (2010) Selective catalytic reductions of amides and nitriles to amines, Topics in Catalysis 53, 979–984. [CrossRef] [Google Scholar]
  • Enthaler S., Junge K., Addis D., Erre G., Beller M. (2008) A practical and benign synthesis of primary amines through ruthenium-catalyzed reduction of nitriles, ChemSusChem 1, 1006–1010. [CrossRef] [PubMed] [Google Scholar]
  • Enthaler S., Addis D., Junge K., Erre G., Beller M. (2008) A practical and benign synthesis of primary amines through ruthenium-catalyzed reduction of nitriles, Chemistry: an, European Journal 14, 9491–9494. [CrossRef] [Google Scholar]
  • Addis D., Enthaler S., Junge K., Wendt B., Beller M. (2009) Ruthenium N-heterocyclic carbene catalysts for selective reduction of nitriles to primary amines, Tetrahedron Letters 50, 3654–3656. [CrossRef] [Google Scholar]
  • Miao X., Fischmeister C., Dixneuf P.H., Bruneau C., Dubois J.-L., Couturier J.-L. (2012) Tandem Catalytic Acrylonitrile Cross-Metathesis and Hydrogenation of Nitriles with Ruthenium Catalysts: Direct Access to Linear α, ω-Aminoesters from Renewables, ChemSusChem 5, 1410–1414. [CrossRef] [PubMed] [Google Scholar]
  • Couturier J.-L., Dubois J.-L., Miao X., Fischmeister C., Bruneau C., Dixneuf P.H. (2011) Brevet: FR 2959742A120111111; PCT Int. Appl., WO 2011138051A1 20111110. [Google Scholar]
  • Bielawski C.W., Louie J., Grubbs R.H. (2000) Tandem Catalysis: Three Mechanistically Distinct Reactions from a Single Ruthenium Complex, Journal of the American Chemical Society 122, 12872–12873. [CrossRef] [Google Scholar]
  • Watson M.D., Wagener K.B. (2000) Tandem Homogeneous Metathesis/Heterogeneous Hydrogenation: Preparing Model Ethylene/CO2 and Ethylene/CO Copolymers, Macromolecules 33, 3196–3201. [CrossRef] [Google Scholar]
  • Drouin S.D., Zamanian F., Fogg D.E. (2001) Multiple Tandem Catalysis: Facile Cycling between Hydrogenation and Metathesis Chemistry, Organometallics 20, 5495–5497. [CrossRef] [Google Scholar]
  • Miao X., Bidange J., Dixneuf P.H., Fischmeister C., Bruneau C., Dubois J.-L., Couturier J.-L. (2012) Ruthenium-benzylidenes and -indenylidenes as efficient catalysts for the hydrogenation of aliphatic nitriles into primary amines, ChemCatChem 4, 1911–1916. [CrossRef] [Google Scholar]
  • Ho T.T.T., Jacobs T., Meier M.A.R. (2009) A Design-of-Experiments Approach for the Optimization and Understanding of the Cross-Metathesis Reaction of Methyl Ricinoleate with Methyl Acrylate, ChemSusChem 2, 749–754. [CrossRef] [PubMed] [Google Scholar]
  • Behr A., Perez Gomes J., Bayrak Z. (2011) Cross-metathesis of methyl 10-undecenoate with diethyl maleate: Formation of an α, ϖ-diester via a metathesis reaction network, European Journal of Lipid Science and Technology 113, 189–196. [CrossRef] [Google Scholar]
  • Djigoué G.B., Meier M.A.R. (2009) Improving the selectivity for the synthesis of two renewable platform chemicals via olefin metathesis, Applied Catalysis A 368, 158–162. [CrossRef] [Google Scholar]
  • Dubois J.-L., Gillet J.-P. (2008) Procédé de co-production de carbonates cycliques et de nitriles et/ou d’amines gras, Patent WO2008145941A9. [Google Scholar]
  • Chauvel A., Lefebvre G. (1989) Petrochemical Processes, Editions Technip 2, 274. [Google Scholar]
  • Miao X., Fischmeister C., Dixneuf P.H., Bruneau C., Dubois J.-L., Couturier J.-L. (2012) Polyamide precursors from renewable 10-undecenenitrile and methyl acrylate via olefin cross-metathesis, Green Chemistry 14, 2179–2183. [CrossRef] [Google Scholar]
  • Das G., Trivedi R.K., Vasishtha A.K. (1989) Heptaldehyde and undecylenic acid from castor oil, Journal of the American Oil Chemists’ Society 66, 938–941. [CrossRef] [Google Scholar]
  • van der Steen M., Stevens C.V., Eeckhout Y., De Buyck L., Ghelfi F., Roncaglia F. (2008) Undecylenic acid: A valuable renewable building block on route to Tyromycin A derivatives, European Journal of Lipid Science and Technology 110, 846–852. [CrossRef] [Google Scholar]
  • van der Steen M., Stevens C.V. (2009) Undecylenic Acid: A Valuable and Physiologically Active Renewable Building Block from Castor Oil, ChemSusChem 8, 692–713. [CrossRef] [Google Scholar]
  • Mutlu H., Meier M.A.R. (2010) Castor oil as a renewable resource for the chemical industry, European Journal of Lipid Science and Technology 112, 10–30. [CrossRef] [Google Scholar]
  • Miao X., Fischmeister C., Bruneau C., Dixneuf P.H. (2009) A direct route to bifunctional aldehyde derivatives via self- and cross-metathesis of unsaturated aldehydes, ChemSusChem 2, 542–545. [CrossRef] [PubMed] [Google Scholar]
  • Bidange J., Fischmeister C., Bruneau C., Dubois J.-L., Couturier J.-L. (2015) Cross-metathesis of bio-sourced fatty nitriles with acrylonitrile, Monatshefte für Chemie 146, 1107–1113. [CrossRef] [Google Scholar]
  • Fischmeister C., Bruneau C. (2011) Ene-yne cross-metathesis with ruthenium carbene catalysts, Beilstein Journal of Organic Chemistry 7, 156–166. [CrossRef] [PubMed] [Google Scholar]
  • Le Ravalec V., Fischmeister C., Bruneau C. (2009) First transformation of unsaturated fatty esters involving enyne cross-metathesis, Advanced Synthesis and Catalysis 351, 1115–1122. [CrossRef] [Google Scholar]
  • Miao X., Fischmeister C., Bruneau C., Dixneuf P.H. (2008) Dimethyl Carbonate: An Eco-Friendly Solvent in Ruthenium-Catalyzed Olefin Metathesis Transformations, ChemSusChem 1, 813–816. [CrossRef] [PubMed] [Google Scholar]
  • Le Ravalec V., Dupé A., Fischmeister C., Bruneau C. (2010) Improving sustainability in ene-yne cross-metathesis for transformation of unsaturated fatty esters, ChemSusChem 3, 1291–1297. [CrossRef] [PubMed] [Google Scholar]
  • Kotha S., Meshram M., Tiwari A. (2009) Advanced approach to polycyclics by a synergistic combination of enyne metathesis and Diels Alder reaction, Chemical Society Reviews 38, 2065–2092. [CrossRef] [PubMed] [Google Scholar]
  • Dupé A., Le Ravalec V., Fischmeister C., Bruneau C. (2013) Stepwise catalytic transformations of renewable feedstock arising from plant oils, European Journal of Lipid Science and Technology 115, 490–500. [CrossRef] [Google Scholar]
  • Zhang H.-J., Demerseman B., Toupet L., Xi Z., Bruneau C. (2008) Novel [Ru(C5Me4R)(2-quinolinecarboxylato)(allyl)][PF6] Complexes as Efficient Catalysts for Highly Regioselective Nucleophilic Substitution of Aliphatic Allylic Substrates, Advanced Synthesis & Catalysis 350, 1601–1609. [CrossRef] [PubMed] [Google Scholar]
  • Biermann U., Bornscheuer U., Meier M.A.R., Metzger J.O., Schäfer H.J. (2011) Oils and Fats as Renewable Raw materials in Chemistry, Angewandte Chemie International Edition 50, 3854–3871. [CrossRef] [PubMed] [Google Scholar]
  • Dupé A., Achard M., Fischmeister C., Bruneau C. (2012) Methyl ricinoleate as platform chemical for simultaneous production of fine chemicals and polymer precursors, ChemSusChem 5, 2249–2254. [CrossRef] [PubMed] [Google Scholar]
  • Behr A., Toslu N. (1999) One-and two-phase reaction engineering of the hydrosilylation reaction, Chemie- Ingenieur Technik 71, 490–493. [CrossRef] [Google Scholar]
  • Huang S., Bilel H., Zagrouba F., Hamdi N., Bruneau C., Fischmeister C. (2015) Olefin metathesis transformations in thermomorphic multicomponent solvent system, Catalysis Communications 63, 31–34. [CrossRef] [Google Scholar]
  • Yoshikai K., Hayama T., Nishimura K., Yamada K.I., Tomioka K. (2005) Thiol-catalyzed acyl radical cyclization of alkenals, Journal of Organic Chemistry 70, 681–683. [CrossRef] [Google Scholar]
  • Gutierrez S., Tlenkopatchev M.A. (2011) Metathesis of renewable products: degradation of natural rubber via cross-metathesis with β-pinene using Ru-alkylidene catalysts, Polymer Bulletin 66, 1029–1038. [CrossRef] [Google Scholar]
  • Borré E., Dinh T.H., Caijo F., Crévisy C., Mauduit M. (2011) Terpenic compounds as renewable sources of raw materials for cross-metathesis, Synthesis 2125–2130. [Google Scholar]
  • Hanessian S., Dhanoa D.S., Beaulieu P.L. (1987) Synthesis of carbocycles from ω-substituted α, β-unsaturated esters via radical-induced cyclizations, Canadian Journal of Chemistry 65, 1859–1866. [CrossRef] [Google Scholar]
  • Brown R.T., Mayalarp S.P., Watts J. (1997) Synthesis of methyl secolonitoside, Journal of the Chemical Society, Perkin Transactions 1, 1633–1637. [CrossRef] [Google Scholar]
  • Yamagushi K., Shinohara C., Kojima S., Sodeoka M., Tsuji T. (1999) (2E,6R)-8-Hydroxy-2,6-dimethyl-2-octenoic Acid, a Novel Anti-osteoporotic Monoterpene Isolated from Cistanche salsa, Bioscience Biotechnology, Biochemistry 63, 731–735. [Google Scholar]
  • Zhang Z., Chen J., Yang Z., Tang Y. (2010) Rapid Biomimetic Total Synthesis of (±)-Rossinone B, Organic Letters 12, 5554–5557. [CrossRef] [PubMed] [Google Scholar]
  • Zhao Y.-J., Loh T.-P. (2008) Practical synthesis of 1,5-dimethyl substituted conjugated polyenes from geranyl acetate, Tetrahedron 64, 4972–4978. [CrossRef] [Google Scholar]
  • Bilel H., Hamdi N., Zagrouba F., Fischmeister C., Bruneau C. (2012) Eugenol as a renewable feedstock for the production of polyfunctional alkenes via olefin cross-metathesis, RSC Advances 2, 9584–9589. [CrossRef] [Google Scholar]
  • Beydoun K., Zhang H.-J., Sundararaju B., Demerseman B., Achard M., Xi Z., Bruneau C. (2009) Efficient ruthenium-catalyzed synthesis of [3]-dendralenes from 1,3-dienic allylic carbonates, Chemical Communications 6580–6582. [CrossRef] [Google Scholar]
  • Bilel H., Hamdi N., Zagrouba Z., Fischmeister C., Bruneau C. (2014) Terminal conjugated dienes via a ruthenium-catalyzed cross-metathesis/elimination sequence: application to renewable resources, Catalysis Science & Technology 4, 2064–2071. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.