Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Numéro 2, March–April 2016
Numéro d'article 29
Nombre de pages 10
DOI https://doi.org/10.2516/ogst/2014050
Publié en ligne 20 janvier 2015
  • Arkoudeas P., Zannikos F., Lois E. (2008) The Tribological Behavior of Essential Oils in Low Sulphur Automotive Diesel, Fuel 87, 17-18, 3648–3654. [CrossRef] [Google Scholar]
  • Baldwin R.M., Feik C.J. (2013) Bio-Oil Stabilization and Upgrading by Hot Gas Filtration, Energy Fuels 27, 6, 3224–3238. [CrossRef] [Google Scholar]
  • Xu Y.F., Yu H.Q., Wei X.Y., Cui Z., Hu X.G., Xue T., Zhang D.Y. (2013) Friction and Wear Behaviors of a Cylinder Liner-Piston Ring with Emulsified Bio-Oil as Fuel, Tribology Transactions 56, 3, 359–365. [CrossRef] [Google Scholar]
  • Elkasabi Y., Mullen C.A., Pighinelli A.L.M.T., Boateng A.A. (2014) Hydrodeoxygenation of Fast-Pyrolysis Bio-Oils from Various Feedstocks Using Carbon-Supported Catalysts, Fuel Processing Technology 123, 11–18. [CrossRef] [Google Scholar]
  • Wang C.P., Hu Y.F., Chen Q., Lv C.Y., Jia S.G. (2013) Bio-oil Upgrading by Reactive Distillation Using P-Toluene Sulfonic Acid Catalyst Loaded on Biomass Activated Carbon, Biomass Bioenergy 56, 405–411. [CrossRef] [Google Scholar]
  • Gunawan R., Li X., Lievens C., Gholizadeh M., Chaiwat W., Hu X., Mourant D., Bromly J., Li C.Z. (2013) Upgrading of Bio-Oil into Advanced Biofuels and Chemicals. Part I. Transformation of GC-detectable Light Species During the Hydrotreatment of Bio-oil Using Pd/C Catalyst, Fuel 111, 709–717. [CrossRef] [Google Scholar]
  • Duan P.G., Xu Y.P., Bai X.J. (2013) Upgrading of Crude Duckweed Bio-Oil in Subcritical Water, Energy Fuels 27, 8, 4729–4738. [CrossRef] [Google Scholar]
  • Xu Y., Zheng X., Yu H., Hu X. (2014) Hydrothermal Liquefaction of Chlorella pyrenoidosa for Bio-Oil Production over Ce/HZSM-5, Bioresource Technology 156, 1–5. [CrossRef] [PubMed] [Google Scholar]
  • Xu Y., Wang Q., Hu X., Li C., Zhu X. (2010) Characterization of the Lubricity of Bio-Oil/Diesel Fuel Blends by High Frequency Reciprocating Test Rig, Energy 35, 1, 283–287. [CrossRef] [Google Scholar]
  • Xu Y.F., Zheng X.J., Yin Y.G., Huang J., Hu X.G. (2014) Comparison and Analysis of the Influence of Test Conditions on the Tribological Properties of Emulsified Bio-Oil, Tribology Letters 55, 3, 543–552. [CrossRef] [Google Scholar]
  • Jena U., Das K.C. (2011) Comparative Evaluation of Thermochemical Liquefaction and Pyrolysis for Bio-oil Production from Microalgae, Energy Fuels 25, 11, 5472–5482. [CrossRef] [Google Scholar]
  • Hu Z.Q., Zheng Y., Yan F., Xiao B., Liu S.M. (2013) Bio-Oil Production through Pyrolysis of Blue-Green Algae Blooms (Bgab): Product Distribution and Bio-Oil Characterization, Energy 52, 119–125. [CrossRef] [Google Scholar]
  • Wang K.G., Brown R.C., Homsy S., Martinez L., Sidhu S.S. (2013) Fast Pyrolysis of Microalgae Remnants in a Fluidized Bed Reactor for Bio-Oil and Biochar Production, Bioresource Technology 127, 494–499. [CrossRef] [PubMed] [Google Scholar]
  • Jena U., Das K.C., Kastner J.R. (2011) Effect of Operating Conditions of Thermochemical Liquefaction on Biocrude Production from Spirulina Platensis, Bioresource Technology 102, 10, 6221–6229. [CrossRef] [PubMed] [Google Scholar]
  • Shum P.W., Xu Y.F., Zhou Z.F., Cheng W.L., Li K.Y. (2012) Study of TiAlSiN Coatings Post-treated with N and C+N Ion Implantations. Part 2: The Tribological Analysis, Wear 274-275, 274–280. [CrossRef] [Google Scholar]
  • Xu Y., Yu H., Hu X., Wei X., Cui Z. (2014) Bio-Oil Production from Algae via Thermochemical Catalytic Liquefaction, Energy Sources, Part A 36, 1, 1–8. [CrossRef] [Google Scholar]
  • Xu Y., Hu X., Yu H., Hu L. (2014) Study of Lubrication Performance and Mechanism of Bio-oils Made from Typical Microalgae, Tribology 34, 3, 291–296 (in Chinese). [Google Scholar]
  • Bera A., Kumar T., Ojha K., Mandal A. (2013) Adsorption of Surfactants on Sand Surface in Enhanced Oil Recovery: Isotherms, Kinetics and Thermodynamic Studies, Applied Surface Science 284, 87–99. [CrossRef] [Google Scholar]
  • Huang W., Du C., Li Z., Liu M., Liu W. (2006) Tribological Characteristics of Magnesium Alloy Using N-Containing Compounds as Lubricating Additives During Sliding, Wear 260, 1-2, 140–148. [CrossRef] [Google Scholar]
  • Grahn M., Naveira-Suarez A., Pasaribu R. (2011) Effect of ZDDP on Friction in Fretting Contacts, Wear 273, 1, 70–74. [CrossRef] [Google Scholar]
  • Hu E., Hu X., Liu T., Song R., Dearn K.D., Xu H. (2013) Effect of TiF3 Catalyst on the Tribological Properties of Carbon Black-Contaminated Engine Oils, Wear 305, 1-2, 166–176. [CrossRef] [Google Scholar]
  • Kasai P., Raman V. (2006) Hydrogen Bonding in Lubricants for Hard Disk Drives, Tribology Letters 21, 3, 205–216. [CrossRef] [Google Scholar]
  • Xu Y., Zheng X., Hu X., Dearn K.D., Xu H. (2014) Effect of Catalytic Esterification on the Friction and Wear Performance of Bio-Oil, Wear 311, 1-2, 93–100. [CrossRef] [Google Scholar]
  • Xu Y., Hu X., Yuan K., Zhu G., Wang W. (2014) Friction and Wear Behaviors of Catalytic Methylesterified Bio-oil, Tribology International 71, 168–174. [CrossRef] [Google Scholar]
  • Grün F., Sailer W., Gódor I. (2012) Visualization of the Processes Taking Place in the Contact Zone with in-situ Tribometry, Tribology International 48, 44–53. [CrossRef] [Google Scholar]
  • Xu Y., Zheng X., Hu X., Yin Y., Lei T. (2014) Preparation of the Electroless Ni–P and Ni–Cu–P Coatings on Engine Cylinder and Their Tribological Behaviors Under Bio-Oil Lubricated Conditions, Surface and Coatings Technology 258, 790–796. [CrossRef] [Google Scholar]
  • Hu K., Hu X., Wang J., Xu Y., Han C. (2012) Tribological Properties of MoS2 with Different Morphologies in High-Density Polyethylene, Tribology Letters 47, 1, 79–90. [CrossRef] [Google Scholar]
  • Hu K., Hu X., Xu Y., Huang F., Liu J. (2010) The Effect of Morphology on the Tribological Properties of MoS2 in Liquid Paraffin, Tribology Letters 40, 1, 155–165. [CrossRef] [Google Scholar]
  • Kim W., Kang H.J., Noh S.K., Song J., Kim C.S. (2007) Magnetic and Structural Properties of Fe Ion-Implanted GaN, J. Magnetism Magnetic Materials 316, 2, e199–e202. [CrossRef] [Google Scholar]
  • Schindler M., Hawthorne F.C., Freund M.S., Burns P.C. (2009) XPS Spectra of Uranyl Minerals and Synthetic Uranyl Compounds. II: the O1s Spectrum, Geochimica Cosmochimica Acta 73, 9, 2488–2509. [CrossRef] [Google Scholar]
  • Schilling T., Bron M. (2008) Oxygen Reduction at Fe–N-Modified Multi-Walled Carbon Nanotubes in Acidic Electrolyte, Electrochimica Acta 53, 16, 5379–5385. [CrossRef] [Google Scholar]
  • Alves S.M., Barros B.S., Trajano M.F., Ribeiro K.S.B., Moura E. (2013) Tribological Behavior of Vegetable Oil-Based Lubricants with Nanoparticles of Oxides in Boundary Lubrication Conditions, Tribology International 65, 28–36. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.