- Alajbegovic A. (1999) Three-Dimensional Cavitation Calculations in Nozzles, Second Annual Meeting of the Institute for Multifluid Science and Technology, Santa Barbara, CA, March 14-18, pp. 97–103. [Google Scholar]
- Ameen M.M., Yang X., Kuo T.W., Xue Q., Som S. (2015) LES for Simulating the Gas Exchange Process in a Spark Ignition Engine, ASME paper number ICEF2015-1002, submitted to ASME ICEF2015, Houston, TX, USA, Nov. [Google Scholar]
- Arcoumanis C., Flora H., Gavaises M., Badami M. (2000) Cavitation in Real-Size Multi-Hole Diesel Injector Nozzles, SAE Technical Paper, 2000-01-1249. [Google Scholar]
- Arienti M., Sussman M. (2014) An embedded level set method for sharp-interface multiphase simulations of Diesel injectors, International Journal of Multiphase Flow 59, 1–14. [CrossRef] [MathSciNet] [Google Scholar]
- Battistoni M., Som S., Longman D.E. (2014a) Comparison of Mixture and Multifluid Models for In-Nozzle Cavitation Prediction, J. Eng. Gas Turbines Power 136, 6, 061506-061506-12, GTP-13-1436. [Google Scholar]
- Battistoni M., Kastengren A.L., Powell C.F., Som S. (2014b) Fluid Dynamics Modeling of End-of-Injection Process, Proceedings of ILASS Americas, Portland OR. [Google Scholar]
- Battistoni M., Duke D.J., Swantek A.B., Tilocco F.Z., Powell C.F., Som S. (2015) Effects of Noncondensable Gas on Cavitating Nozzles, Atomization and Sprays 25, 6, 453–483. [Google Scholar]
- Bianchi G., Minelli F., Scardovelli R., Zaleski S. (2007) 3D Large Scale Simulation of the High-Speed Liquid Jet Atomization, SAE Technical Paper 2007-01-0244. [Google Scholar]
- Bilicki Z., Kestin J. (1990) Physical aspects of the relaxation model in two-phase flow, Proc. Roy. Soc. Lond. A. 428, 379–397. [Google Scholar]
- Bode M., Diewald F., Broll D.O., Heyse J.F., Le Chenadec V., Pitsch H. (2014) Influence of the Injector Geometry on Primary Breakup in Diesel Injector Systems, SAE Technical Paper 2014-01-1427. [Google Scholar]
- Brackbill J.U., Kothe D.B., Zemach C. (1992) A Continuum Method for Modeling Surface Tension, Journal of Computational Physics 100, 335–354. [Google Scholar]
- Brennen C.E. (1995) Cavitation and Bubble Dynamics, Oxford University Press. [Google Scholar]
- Bruneaux G. (2005) Mixing Process in High Pressure Diesel Jets by Normalized Laser Induced Exciplex Fluorescence Part I: Free Jet, SAE Technical Paper 2005-01-2100. [Google Scholar]
- Brusiani F., Bianchi G. (2008) LES Simulation of ICE Non-Reactive Flows in Fixed Grids, SAE Technical Paper 2008-01-0959. [Google Scholar]
- Celik I.B., Cehreli Z.N., Yavuz I. (2005) Index of Resolution Quality for Large Eddy Simulations, ASME Journal of Fluids Engineering 127, 5, 949–958. [Google Scholar]
- Crua C., Shoba T., Heikal M., Gold M., Higham C. (2010) High-Speed Microscopic Imaging of the Initial Stage of Diesel Spray Formation and Primary Breakup, SAE Technical Paper 2010-01-2247. [Google Scholar]
- Davidson L. (2009) Large eddy simulations: How to evaluate resolution, Int. J. Heat Fluid Flow 30, 1016–1025. [Google Scholar]
- Demoulin F.X., Beau P.A., Blokkeel G., Mura A., Borghi R. (2007) A new model for turbulent flows with large density fluctuations: Application to liquid atomization, Atomization and Sprays 17, 4, 315–345. [CrossRef] [Google Scholar]
- Downar-Zapolski P., Bilicki Z., Bolle L., Franco J. (1996) The non-equilibrium relaxation model for one-dimensional flashing liquid flow, Int. J. of Multiphase Flow 22, 3, 473–483. [CrossRef] [Google Scholar]
- Eagle W.E., Musculus M.P. (2014) Cinema-stereo imaging of fuel dribble after the end of injection in an optical heavy-duty Diesel engine, Thiesel Conference Proceedings, Valencia. [Google Scholar]
- Gorokhovski M., Herrmann M. (2008) Primary atomizing modeling, Annu. Rev. Fluid Mech. 40, 343–366. [CrossRef] [Google Scholar]
- Habchi C. (2014) A Gibbs Energy Relaxation Model (GERM) for Cavitation Simulation, Atomization and Sprays 25, 4, 317–334. [CrossRef] [Google Scholar]
- Hu B., Musculus M., Oefelein J. (2010) Large Eddy Simulation of a Transient Air Jet with Emphasis on Entrainment during Deceleration, SAE Technical Paper 2010-01-1133. [Google Scholar]
- Issa R.I. (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting, J. Comput. Phys. 62, 40–65. [NASA ADS] [CrossRef] [Google Scholar]
- Kastengren A.L., Powell C.F., Wang Y.-J., Wang J. (2008) Study of Diesel Jet Variability Using Single-Shot X-Ray Radiography, ASME J. Eng. Gas Turb. Power 032811-1. [Google Scholar]
- Kastengren A.L., Tilocco F.Z., Duke D., Powell C.F., Zhang X., Moon S. (2014) Time-resolved X-ray radiography of sprays from Engine Combustion Network spray A Diesel injectors, Atomization and Sprays 24, 3, 251–272. [CrossRef] [Google Scholar]
- Musculus M. (2009) Entrainment waves in decelerating transient turbulent jets, J. Fluid Mech. 638, 117–140. [CrossRef] [Google Scholar]
- Musculus M.P.B., Miles P.C., Pickett L.M. (2013) Conceptual Models for Partially Premixed Low-Temperature Diesel Combustion, Progress in Energy and Combustion Science 39, 2-3, 246–283. [CrossRef] [Google Scholar]
- Oefelein J., Lacaze G., Dahms R., Ruiz A., Misdariis A. (2014) Effects of Real-Fluid Thermodynamics on High-Pressure Fuel Injection Processes, SAE Int. J. Engines 7, 3, 1125–1136. [CrossRef] [Google Scholar]
- Pickett L., Manin J., Payri R., Bardi M., Gimeno J. (2013) Transient Rate of Injection Effects on Spray Development, SAE Technical Paper 2013-24-0001. [Google Scholar]
- Piscaglia F., Montorfano A., Onorati A., Brusiani F. (2014) Boundary Conditions and SGS Models for LES of Wall-Bounded Separated Flows: An Application to Engine-Like Geometries, Oil & Gas Science and Technology – Rev. IFP Energies nouvelles 69, 1, 11–27. [CrossRef] [EDP Sciences] [Google Scholar]
- Pomraning E., Rutland C.J. (2002) A Dynamic One-Equation Non-Viscosity LES Model, AIAA Journal 40, 4, 659–701. [Google Scholar]
- Pope S.B. (2000) Turbulent Flows, Cambridge University Press. [CrossRef] [Google Scholar]
- Pope S.B. (2004) Ten questions concerning the large-eddy simulation of turbulent flows, New Journal of Physic 6, 35. [Google Scholar]
- Quan S., Dai M., Pomraning E., Senecal P.K., Richards K., Som S., Skeen S., Manin J., Pickett L.M. (2014) Numerical Simulations of Supersonic Diesel Spray Injection and the Induced Shock Waves, SAE Int. J. Engines 7, 2, 1054–1060. [CrossRef] [Google Scholar]
- Rhie C.M., Chow W.L. (1983) A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation, AIAA 21, 11, 1525–1532. [Google Scholar]
- Schmidt D.P., Gopalakrishnan S., Jasak H. (2010) Multidimensional simulation of thermal non-equilibrium channel flow, Int. J. of Multiphase Flow 36, 284–292. [Google Scholar]
- Senecal P.K., Richards K., Pomraning E., Yang T. (2007) A New Parallel Cut-Cell Cartesian CFD Code for Rapid Grid Generation Applied to In-Cylinder Diesel Engine Simulations, SAE Technical Paper 2007-01-0159. [Google Scholar]
- Senecal P.K., Pomraning E., Richards K., Som S. (2013) An Investigation of Grid Convergence for Spray Simulations using an LES Turbulence Model, SAE Technical Paper 2013-01-1083. [Google Scholar]
- Senecal P.K., Pomraning E., Xue Q., Som S., Banerjee S., Hu B., Liu K., Deur J. (2014) Large Eddy simulation of vaporizing sprays considering multi-injection averaging and grid-convergent mesh resolution, ASME Journal of Engineering for Gas Turbine and Power 136, 11, 111504: 1–13. [Google Scholar]
- Som S., D’Errico G., Longman D., Lucchini T. (2012a) Comparison and Standardization of Numerical Approaches for the Prediction of Non-reacting and Reacting Diesel Sprays, SAE Technical Paper 2012-01-1263. [Google Scholar]
- Som S., Longman D.E., Luo Z., Plomer M., Lu T., Senecal P.K., Pomraning E. (2012b) Simulating flame lift-off characteristics of Diesel and biodiesel fuels using detailed chemical-kinetic mechanisms, ASME Journal of Energy Resources Technology 134, 3, 032204. [CrossRef] [Google Scholar]
- Stetsyuk V., Crua C., Pearson R., Gold M. (2014) Direct imaging of primary atomization in the near-nozzle region of Diesel sprays, Proceedings of ILASS Europe, Bremen, Germany. [Google Scholar]
- Swantek A.B., Duke J.D., Sovis N., Tilocco F.Z., Powell C.F., Kastengren A.L. (2013) End of Injection Behavior in Single Hole Diesel Fuel Injectors, Advanced Engine Combustion (AEC) Meeting, Southfield, MI. [Google Scholar]
- Swantek A.B., Duke J.D., Tilocco F.Z., Sovis N., Powell C.F., Kastengren A.L. (2014) End of Injection, Mass Expulsion Behaviors in Single Hole Diesel Fuel Injectors, Proceedings of ILASS Americas, Portland OR. [Google Scholar]
- Vallet A., Burluka A.A., Borghi R. (2001) Development of a Eulerian Model for the ‘Atomization’ of a Liquid Jet, Atomization and Sprays 11, 619–642. [CrossRef] [Google Scholar]
- Wang D.M., Greif D. (2006) Progress in Modeling Injector Cavitating Flows with a Multi-Fluid Method, ASME Paper No. FEDSM2006-98501. [Google Scholar]
- Wang Y., Qiu L., Reitz R.D., Diwakar R. (2014) Simulating cavitating liquid jets using a compressible and equilibrium two-phase flow solver, International Journal of Multiphase Flow 63, 52–67. [CrossRef] [MathSciNet] [Google Scholar]
- Werner H., Wengle H. (1991) Large Eddy Simulation of Turbulent Flow Over and Around a Cube in a Plane Channel, Proceedings of Eighth Symposium Turbulent Shear Flows. [Google Scholar]
- Xiao H., Wang J., Jenny P. (2014) Dynamic Evaluation of Mesh Resolution and Its Application in Hybrid LES/RANS Methods, Flow Turbulence Combust 93, 141–170. [CrossRef] [Google Scholar]
- Xue Q., Som S., Senecal P.K., Pomraning E. (2013) Large Eddy Simulation of Fuel Spray Under Non-Reacting IC Engine Conditions, Atomization and Sprays 23, 10, 925–955. [CrossRef] [Google Scholar]
- Xue Q., Battistoni M., Som S., Quan S., Senecal P.K., Pomraning E., Schmidt D. (2014) Eulerian CFD Modeling of Coupled Nozzle Flow and Spray with Validation Against X-Ray Radiography Data, SAE Int. J. Engines 7, 2, 1061–1072. [CrossRef] [Google Scholar]
- Xue Q., Battistoni M., Powell C.F., Longman D.E., Quan S., Pomraning E., Senecal P.K., Schmidt D.P., Som S. (2015) An Eulerian CFD Model and X-ray Radiography for Coupled Nozzle Flow and Spray in Internal Combustion Engines, International Journal of Multiphase Flow 70, 77–88. [CrossRef] [Google Scholar]
- Yu R., Kuo T., Shahed S., Chang T. (1983) The Effect of Mixing Rate, End of Injection, and Sac Volume on Hydrocarbon Emissions from a D.I, Diesel Engine, SAE Technical Paper 831294. [Google Scholar]
- Zhao H., Quan S., Dai M., Pomraning E., Senecal P.K., Xue Q., Battistoni M., Som S. (2014) Validation of Three-Dimensional Internal Nozzle Flow Including Automatic Mesh Generation and Cavitation Effects, ASME J. Eng. Gas Turbines Power 136, 9, 092603–092603-10, GTP-14-1111. [CrossRef] [Google Scholar]
Numéro |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Numéro 1, January–February 2016
IFP Energies nouvelles International Conference: LES4ICE 2014 – Large-Eddy Simulation for Internal Combustion Engine Flows
|
|
---|---|---|
Numéro d'article | 4 | |
Nombre de pages | 24 | |
DOI | https://doi.org/10.2516/ogst/2015024 | |
Publié en ligne | 22 janvier 2016 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.