Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Numéro 6, November–December 2015
Page(s) 1101 - 1109
DOI https://doi.org/10.2516/ogst/2013197
Publié en ligne 3 janvier 2014
  • Okimoto D., Brouwer J. (2002) Supersonic Gas Conditioning, World Oil 223, 89–91. [Google Scholar]
  • Betting M., Epsom H. (2007) Supersonic Separator Gains Market Acceptance, World Oil 254, 197–200. [Google Scholar]
  • Alfyorov V., Bagirov L.A., Dmitriev L., Feygin V., Imayev S., Lacey J.R. (2005) Supersonic Nozzle Efficiently Separates Natural Gas Components, Oil Gas J. 103, 53–58. [Google Scholar]
  • Liu H., Liu Z., Feng Y., Gu K., Yan T. (2005) Characteristic of a Supersonic Swirling Dehydration System of Natural Gas, Chin. J. Chem. Eng. 1, 9–12. [Google Scholar]
  • Jassim E., Abdi M.A., Muzychka Y. (2008) Computational Fluid Dynamics Study for Flow of Natural Gas through High-pressure Supersonic Nozzles: Part 1. Real Gas Effects and Shockwave, Pet. Sci. Technol. 26, 1757–1772. [CrossRef] [Google Scholar]
  • Jassim E., Abdi M.A., Muzychka Y. (2008) Computational Fluid Dynamics Study for Flow of Natural Gas through High-pressure Supersonic Nozzles: Part 2. Nozzle Geometry and Vorticity, Pet. Sci. Technol. 26, 1773–1785. [CrossRef] [Google Scholar]
  • Karimi A., Abdi M.A. (2009) Selective Dehydration of High-Pressure Natural Gas Using Supersonic Nozzles, Chem. Eng. Process. 48, 560–568. [CrossRef] [Google Scholar]
  • Malyshkina M.M. (2008) The Structure of Gas Dynamic Flow in a Supersonic Separator of Natural Gas, High Temp. 46, 69–76. [CrossRef] [Google Scholar]
  • Malyshkina M.M. (2010) The Procedure for Investigation of the Efficiency of Purification of Natural Gases in a Supersonic Separator, High Temp. 48, 244–250. [CrossRef] [Google Scholar]
  • Zaporozhets E.P., Zibert G.K., Zibert A.G. (2011) Thermal Gas Dynamic Separator, Chem. Petrol. Eng. 46, 585–593. [CrossRef] [Google Scholar]
  • Jiang D., Eri Q., Wang C., Tang L. (2011) A Fast and Efficient Numerical-Simulation Method for Supersonic Gas Processing, SPE Projects, Facilities & Construction 6, 58–64. [Google Scholar]
  • Wen C., Cao X., Yang Y., Zhang J. (2011) Supersonic Swirling Characteristics of Natural Gas in Convergent-Divergent Nozzles, Petrol. Sci. 8, 114–119. [CrossRef] [Google Scholar]
  • Wen C., Cao X., Yang Y., Zhang J. (2011) Swirling Effects on the Performance of Supersonic Separators for Natural Gas Separation, Chem. Eng. Technol. 34, 1575–1580. [CrossRef] [Google Scholar]
  • Wen C., Cao X., Yang Y., Li W. (2012) Numerical Simulation of Natural Gas Flows in Diffusers for Supersonic Separators, Energy 37, 195–200. [CrossRef] [Google Scholar]
  • Wen C., Cao X., Yang Y., Zhang J. (2012) Evaluation of Natural Gas Dehydration in Supersonic Swirling Separators Applying the Discrete Particle Method, Adv. Powder Technol. 23, 228–233. [CrossRef] [Google Scholar]
  • ANSYS Fluent User Manual, 2011, ANSYS INC. [Google Scholar]
  • Redlich O., Kwong J.N.S. (1949) On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions, Chem. Rev. 44, 233–244. [CrossRef] [PubMed] [Google Scholar]
  • Soave G. (1972) Equilibrium Constants from a Modified Redlich-Kwong Equation of State, Chem. Eng. Sci. 27, 1197–1203. [CrossRef] [Google Scholar]
  • Peng D.Y., Robinson D.B. (1976) A New Two-Constant Equation of State, Ind. Eng. Chem. Fundam. 15, 59–64. [CrossRef] [Google Scholar]
  • Aungier R.H. (1995) A Fast, Accurate Real Gas Equation of State for Fluid Dynamic Analysis Applications, J. Fluids Eng. 117, 277–281. [CrossRef] [Google Scholar]
  • Kwak T.Y., Mansoori G.A. (1986) Van der Waals Mixing Rules for Cubic Equations of State. Applications for Supercritical Fluid Extraction Modeling, Chem. Eng. Sci. 41, 1303–1309. [CrossRef] [Google Scholar]
  • Benmekki E.H., Kwak T.Y., Mansoori G.A. (1987) Supercritical Fluids, American Chemical Society, Washington. [Google Scholar]
  • Wen C., Cao X., Yang Y. (2011) Swirling Flow of Natural Gas in Supersonic Separators, Chem. Eng. Process. 50, 644–649. [CrossRef] [Google Scholar]
  • Foelsch K. (1949) The Analytical Design of an Axially Symmetric Laval Nozzle for a Parallel and Uniform Jet, J. Aero. Sci. 16, 161–166. [CrossRef] [Google Scholar]
  • Pope S.B. (2000) Turbulent flows, Cambridge University Press, Cambridge. [CrossRef] [Google Scholar]
  • Patankar S.V., Spalding D.B. (1972) A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows, Int. J. Heat Mass Trans. 15, 1787–1806. [CrossRef] [Google Scholar]
  • Patankar S.V. (1980) Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York. [Google Scholar]
  • Wen C., Cao X., Yang Y., Li W. (2011) An Unconventional Supersonic Liquefied Technology for Natural Gas, Energy Educ. Sci. Technol. 30, 651–660. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.