Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Number 6, November–December 2015
Page(s) 1101 - 1109
DOI https://doi.org/10.2516/ogst/2013197
Published online 03 January 2014
  • Okimoto D., Brouwer J. (2002) Supersonic Gas Conditioning, World Oil 223, 89–91. [Google Scholar]
  • Betting M., Epsom H. (2007) Supersonic Separator Gains Market Acceptance, World Oil 254, 197–200. [Google Scholar]
  • Alfyorov V., Bagirov L.A., Dmitriev L., Feygin V., Imayev S., Lacey J.R. (2005) Supersonic Nozzle Efficiently Separates Natural Gas Components, Oil Gas J. 103, 53–58. [Google Scholar]
  • Liu H., Liu Z., Feng Y., Gu K., Yan T. (2005) Characteristic of a Supersonic Swirling Dehydration System of Natural Gas, Chin. J. Chem. Eng. 1, 9–12. [Google Scholar]
  • Jassim E., Abdi M.A., Muzychka Y. (2008) Computational Fluid Dynamics Study for Flow of Natural Gas through High-pressure Supersonic Nozzles: Part 1. Real Gas Effects and Shockwave, Pet. Sci. Technol. 26, 1757–1772. [CrossRef] [Google Scholar]
  • Jassim E., Abdi M.A., Muzychka Y. (2008) Computational Fluid Dynamics Study for Flow of Natural Gas through High-pressure Supersonic Nozzles: Part 2. Nozzle Geometry and Vorticity, Pet. Sci. Technol. 26, 1773–1785. [CrossRef] [Google Scholar]
  • Karimi A., Abdi M.A. (2009) Selective Dehydration of High-Pressure Natural Gas Using Supersonic Nozzles, Chem. Eng. Process. 48, 560–568. [CrossRef] [Google Scholar]
  • Malyshkina M.M. (2008) The Structure of Gas Dynamic Flow in a Supersonic Separator of Natural Gas, High Temp. 46, 69–76. [CrossRef] [Google Scholar]
  • Malyshkina M.M. (2010) The Procedure for Investigation of the Efficiency of Purification of Natural Gases in a Supersonic Separator, High Temp. 48, 244–250. [CrossRef] [Google Scholar]
  • Zaporozhets E.P., Zibert G.K., Zibert A.G. (2011) Thermal Gas Dynamic Separator, Chem. Petrol. Eng. 46, 585–593. [CrossRef] [Google Scholar]
  • Jiang D., Eri Q., Wang C., Tang L. (2011) A Fast and Efficient Numerical-Simulation Method for Supersonic Gas Processing, SPE Projects, Facilities & Construction 6, 58–64. [Google Scholar]
  • Wen C., Cao X., Yang Y., Zhang J. (2011) Supersonic Swirling Characteristics of Natural Gas in Convergent-Divergent Nozzles, Petrol. Sci. 8, 114–119. [CrossRef] [Google Scholar]
  • Wen C., Cao X., Yang Y., Zhang J. (2011) Swirling Effects on the Performance of Supersonic Separators for Natural Gas Separation, Chem. Eng. Technol. 34, 1575–1580. [CrossRef] [Google Scholar]
  • Wen C., Cao X., Yang Y., Li W. (2012) Numerical Simulation of Natural Gas Flows in Diffusers for Supersonic Separators, Energy 37, 195–200. [CrossRef] [Google Scholar]
  • Wen C., Cao X., Yang Y., Zhang J. (2012) Evaluation of Natural Gas Dehydration in Supersonic Swirling Separators Applying the Discrete Particle Method, Adv. Powder Technol. 23, 228–233. [CrossRef] [Google Scholar]
  • ANSYS Fluent User Manual, 2011, ANSYS INC. [Google Scholar]
  • Redlich O., Kwong J.N.S. (1949) On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions, Chem. Rev. 44, 233–244. [CrossRef] [PubMed] [Google Scholar]
  • Soave G. (1972) Equilibrium Constants from a Modified Redlich-Kwong Equation of State, Chem. Eng. Sci. 27, 1197–1203. [CrossRef] [Google Scholar]
  • Peng D.Y., Robinson D.B. (1976) A New Two-Constant Equation of State, Ind. Eng. Chem. Fundam. 15, 59–64. [CrossRef] [Google Scholar]
  • Aungier R.H. (1995) A Fast, Accurate Real Gas Equation of State for Fluid Dynamic Analysis Applications, J. Fluids Eng. 117, 277–281. [CrossRef] [Google Scholar]
  • Kwak T.Y., Mansoori G.A. (1986) Van der Waals Mixing Rules for Cubic Equations of State. Applications for Supercritical Fluid Extraction Modeling, Chem. Eng. Sci. 41, 1303–1309. [CrossRef] [Google Scholar]
  • Benmekki E.H., Kwak T.Y., Mansoori G.A. (1987) Supercritical Fluids, American Chemical Society, Washington. [Google Scholar]
  • Wen C., Cao X., Yang Y. (2011) Swirling Flow of Natural Gas in Supersonic Separators, Chem. Eng. Process. 50, 644–649. [CrossRef] [Google Scholar]
  • Foelsch K. (1949) The Analytical Design of an Axially Symmetric Laval Nozzle for a Parallel and Uniform Jet, J. Aero. Sci. 16, 161–166. [CrossRef] [Google Scholar]
  • Pope S.B. (2000) Turbulent flows, Cambridge University Press, Cambridge. [CrossRef] [Google Scholar]
  • Patankar S.V., Spalding D.B. (1972) A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows, Int. J. Heat Mass Trans. 15, 1787–1806. [CrossRef] [Google Scholar]
  • Patankar S.V. (1980) Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York. [Google Scholar]
  • Wen C., Cao X., Yang Y., Li W. (2011) An Unconventional Supersonic Liquefied Technology for Natural Gas, Energy Educ. Sci. Technol. 30, 651–660. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.