Dossier: Characterization of European CO2 Storage – European Project SiteChar
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Numéro 4, July–August 2015
Dossier: Characterization of European CO2 Storage – European Project SiteChar
Page(s) 681 - 693
DOI https://doi.org/10.2516/ogst/2014046
Publié en ligne 8 janvier 2015
  • Adler P.M. (1992) Porous media: geometry and transport, Butterworth-Heinemann, Boston, USA. [Google Scholar]
  • Algive L., Békri S., Robin M., Vizika O. (2007) Reactive Transport: Experiments and Pore Network Modelling, Paper SCA2007-10 prepared for presentation at the International Symposium of the Society of Core Analysts, Calgary, Canada, 10-12 Sept., pp. 1–13. [Google Scholar]
  • Algive L., Békri S., Vizika O. (2010) Pore-network modeling dedicated to the determination of the petrophysical-property changes in the presence of reactive fluid, SPE J. 15, 618–633. [CrossRef] [Google Scholar]
  • Békri S., Laroche C., Vizika O. (2002) Pore-network models to calculate transport properties in homogeneous and heterogeneous porous media, Computational Methods in, Water Resources, pp. 1–8. [Google Scholar]
  • Békri S., Vizika O. (2006) Pore-network modeling of rock transport properties: application to a carbonate, Paper SCA2006-22 prepared for presentation at International Symposium of the Society of Core Analysts, 12-16 Sept, Trondheim, Norway, pp. 1–12. [Google Scholar]
  • Békri S., Thovert J.F., Adler P.M. (1995) Dissolution of porous media, Chem. Eng. Sci. 50, 2765–2791. [CrossRef] [Google Scholar]
  • Blunt M., Zhou D., Fenwick D. (1995) Three-phase flow and gravity drainage in porous media, Transp. Porous Med. 20, 77–103. [CrossRef] [Google Scholar]
  • Corey A. (1954) The interrelation between gas and oil relative permeabilities, Prod. Mon. 19, 38–41. [Google Scholar]
  • Dias M.M., Payatakes A.C. (1986) Network models for two-phase flow in porous media. Part 2. Motion of oil ganglia, J. Fluid Mech. 164, 337–358. [CrossRef] [Google Scholar]
  • van Dijke M., Sorbie K. (2002) Pore-scale network model for three-phase flow in mixed-wet porous media, Phys. Rev. E. 66, 1–14. [CrossRef] [Google Scholar]
  • Fatt I. (1956) The network model of porous media, Trans. AIME 207, 144–181. [Google Scholar]
  • Fenwick D.H., Blunt M.J. (1998) Three-dimensional modeling of three-phase imbibition and drainage, Adv. Water Resources 21, 2, 121–143. [CrossRef] [Google Scholar]
  • Heiba A.A., Sahimi M., Scriven L.E., Davis H.T. (1992) Percolation theory of to-phase relative permeability, SPE Reservoir Engineering 7, 123–132. [CrossRef] [Google Scholar]
  • Hoefner M.L., Fohler H.S. (1988) Pore Evolution and Channel Formation During Flow and Reaction in Porous Media, AIChE 34, 1, 45–54. [CrossRef] [Google Scholar]
  • Izgec O., Demiral B., Bertin H., Akin S. (2008a) CO2 Injection into Saline Carbonate Aquifer Formations II: Comparison of Numerical Simulations to Experiments, Transp. Porous Med. 73, 57–74. [CrossRef] [Google Scholar]
  • Izgec O., Demiral B., Bertin H., Akin S. (2008b) CO2 injection into saline carbonate aquifer formations I: laboratory investigation, Transp. Porous Med. 72, 1–24. [CrossRef] [Google Scholar]
  • Kim D., Lindquist W.B. (2011) Dependence of pore-to-core up-scaled reaction rate on flow rate in porous media, Transp. Porous Med. 89, 459–473. [CrossRef] [Google Scholar]
  • Kim D., Peters C.A., Lindquist W.B. (2011) Upscaling geochemical reaction rates accompanying acidic CO2-saturated brine flow in sandstone aquifers, Water Resour Res. 47, 1–49. [CrossRef] [Google Scholar]
  • Laroche C., Vizika O., Kalaydjian F. (1999) Network modeling as a tool to predict three-phase gas injection in heterogeneous wettability porous media, J. Petrol. Sci. Eng. 24, 155–168. [CrossRef] [Google Scholar]
  • Laroche C., Vizika O. (2005) Two-phase flow properties prediction from small-scale data using pore-network modeling, Transp. Porous Med. 61, 77–91. [CrossRef] [Google Scholar]
  • Lemaitre R., Adler P.M. (1990) Fractal porous media IV: three-dimensional stokes flow through random media and regular fractals, Transp. Porous Med. 5, 325–340. [CrossRef] [Google Scholar]
  • Li L., Peters C.A., Celia M. (2006) Upscaling geochemical reaction using pore-scale network modeling, Adv. Water Resour. 29, 1351–1370. [CrossRef] [Google Scholar]
  • McDougall S.R., Sorbie K.S. (1997) Application of network modelling techniques tomultiphase flow in porous media, Petroleum Geoscience 3, 161–169. [CrossRef] [Google Scholar]
  • Mohanty K.K., Salter S.J. (1982) Multiphase flow in porous media: II. Pore-level modeling, SPE paper 11018, presented at the 57th Annual Technical Conference and Exhibition of the SPE AIME, 26-29 Sept, New-Orleans, LA. [Google Scholar]
  • Øren P. (2003) Reconstruction of Berea sandstone and pore-scale modelling of wettability effects, J. Petrol. Sci. Eng. 39, 177–199. [CrossRef] [Google Scholar]
  • Øren P.E., Bakke S. (2002) Process based reconstruction of sandstones and prediction of transport properties, Transp. Porous Med. 46, 311–343. [CrossRef] [Google Scholar]
  • Payatakes A.C., Dias M.M. (1984) Immiscible microdisplacement and ganglion dynamics in porous media, Rev. Chem. Eng. 2, 85–174. [CrossRef] [Google Scholar]
  • Prat M. (1995) Isothermal drying of non-hygroscopic capillary porous materials as an invasion percolation process, Int. J. Multiphase Flow 21, 5, 875–892. [CrossRef] [Google Scholar]
  • Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T. (1992) Numerical Recipes in C: The Art of Scientific Computing, 2nd edn, Cambridge University Press, Cambridge, England. [Google Scholar]
  • Sahimi M. (1995) Flow and Transport in Porous Media and Fractured Rock, VCH Velagsgesellschaft mbH, Weinheim, Germany. [Google Scholar]
  • Shapiro M., Brenner H. (1986) Taylor dispersion of chemically reactive species: irreversible first-order reactions in bulk and on boundaries, Chem. Eng. Sci. 41, 1417–1433. [CrossRef] [Google Scholar]
  • Shapiro M., Brenner H. (1988) Dispersion of a chemically reactive solute in a spatially periodic model of a porous medium, Chem. Eng. Sci. 43, 551–571. [CrossRef] [Google Scholar]
  • Sok R., Knackstedt M., Sheppard A., Pinczewski W., Lindquist W., Venkatarangan A., Paterson L. (2002) Direct and stochastic generation of network models from tomographic images; effect of topology on residual saturations, Transp. Porous Med. 46, 345–371. [CrossRef] [Google Scholar]
  • Stewart T.L., Kim D.S. (2004) Modeling of biomass-plug development and propagation in porous media, Biochem. Eng. J. 17, 107–119. [CrossRef] [Google Scholar]
  • Swoboda-Colberg N.G., Drever J.I. (1993) Mineral dissolution rates in plot-scale field and laboratory experiments, Chem. Geol. 105, 51–69. [CrossRef] [Google Scholar]
  • Varloteaux C., Békri S., Adler P.M. (2013a) Pore network modelling to determine the transport properties in presence of a reactive fluid: From pore to reservoir scale, Adv. Water Resour. 53, 87–100. [CrossRef] [Google Scholar]
  • Varloteaux C., Minh T.V., Békri S., Adler P.M. (2013b) Reactive transport in porous media: Pore-network model approach compared to pore-scale model, Phys. Rev. E 87, 023010. [CrossRef] [Google Scholar]
  • Wood B., Radakovich K., Golfier F. (2007) Effective reaction at a fluid-solid interface: Applications to biotransformation in porous media, Adv. Water Resour. 30, 1630–1647. [CrossRef] [Google Scholar]
  • Youssef S., Rosenberg E., Gland N., Békri S., Vizika O. (2007) Quantitative 3D characterisation of the pore space of real rocks: improved l-CT resolution and pore extraction methodology, Paper SCA2007-17 prepared for presentation at the International Symposium of the Society of Core Analysts, 10-12 Sept, Calgary, pp. 1–13. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.