Dossier: Characterization of European CO2 Storage – European Project SiteChar
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Number 4, July–August 2015
Dossier: Characterization of European CO2 Storage – European Project SiteChar
Page(s) 681 - 693
Published online 08 January 2015
  • Adler P.M. (1992) Porous media: geometry and transport, Butterworth-Heinemann, Boston, USA. [Google Scholar]
  • Algive L., Békri S., Robin M., Vizika O. (2007) Reactive Transport: Experiments and Pore Network Modelling, Paper SCA2007-10 prepared for presentation at the International Symposium of the Society of Core Analysts, Calgary, Canada, 10-12 Sept., pp. 1–13. [Google Scholar]
  • Algive L., Békri S., Vizika O. (2010) Pore-network modeling dedicated to the determination of the petrophysical-property changes in the presence of reactive fluid, SPE J. 15, 618–633. [CrossRef] [Google Scholar]
  • Békri S., Laroche C., Vizika O. (2002) Pore-network models to calculate transport properties in homogeneous and heterogeneous porous media, Computational Methods in, Water Resources, pp. 1–8. [Google Scholar]
  • Békri S., Vizika O. (2006) Pore-network modeling of rock transport properties: application to a carbonate, Paper SCA2006-22 prepared for presentation at International Symposium of the Society of Core Analysts, 12-16 Sept, Trondheim, Norway, pp. 1–12. [Google Scholar]
  • Békri S., Thovert J.F., Adler P.M. (1995) Dissolution of porous media, Chem. Eng. Sci. 50, 2765–2791. [CrossRef] [Google Scholar]
  • Blunt M., Zhou D., Fenwick D. (1995) Three-phase flow and gravity drainage in porous media, Transp. Porous Med. 20, 77–103. [CrossRef] [Google Scholar]
  • Corey A. (1954) The interrelation between gas and oil relative permeabilities, Prod. Mon. 19, 38–41. [Google Scholar]
  • Dias M.M., Payatakes A.C. (1986) Network models for two-phase flow in porous media. Part 2. Motion of oil ganglia, J. Fluid Mech. 164, 337–358. [CrossRef] [Google Scholar]
  • van Dijke M., Sorbie K. (2002) Pore-scale network model for three-phase flow in mixed-wet porous media, Phys. Rev. E. 66, 1–14. [CrossRef] [Google Scholar]
  • Fatt I. (1956) The network model of porous media, Trans. AIME 207, 144–181. [Google Scholar]
  • Fenwick D.H., Blunt M.J. (1998) Three-dimensional modeling of three-phase imbibition and drainage, Adv. Water Resources 21, 2, 121–143. [CrossRef] [Google Scholar]
  • Heiba A.A., Sahimi M., Scriven L.E., Davis H.T. (1992) Percolation theory of to-phase relative permeability, SPE Reservoir Engineering 7, 123–132. [CrossRef] [Google Scholar]
  • Hoefner M.L., Fohler H.S. (1988) Pore Evolution and Channel Formation During Flow and Reaction in Porous Media, AIChE 34, 1, 45–54. [CrossRef] [Google Scholar]
  • Izgec O., Demiral B., Bertin H., Akin S. (2008a) CO2 Injection into Saline Carbonate Aquifer Formations II: Comparison of Numerical Simulations to Experiments, Transp. Porous Med. 73, 57–74. [CrossRef] [Google Scholar]
  • Izgec O., Demiral B., Bertin H., Akin S. (2008b) CO2 injection into saline carbonate aquifer formations I: laboratory investigation, Transp. Porous Med. 72, 1–24. [CrossRef] [Google Scholar]
  • Kim D., Lindquist W.B. (2011) Dependence of pore-to-core up-scaled reaction rate on flow rate in porous media, Transp. Porous Med. 89, 459–473. [CrossRef] [Google Scholar]
  • Kim D., Peters C.A., Lindquist W.B. (2011) Upscaling geochemical reaction rates accompanying acidic CO2-saturated brine flow in sandstone aquifers, Water Resour Res. 47, 1–49. [CrossRef] [Google Scholar]
  • Laroche C., Vizika O., Kalaydjian F. (1999) Network modeling as a tool to predict three-phase gas injection in heterogeneous wettability porous media, J. Petrol. Sci. Eng. 24, 155–168. [CrossRef] [Google Scholar]
  • Laroche C., Vizika O. (2005) Two-phase flow properties prediction from small-scale data using pore-network modeling, Transp. Porous Med. 61, 77–91. [CrossRef] [Google Scholar]
  • Lemaitre R., Adler P.M. (1990) Fractal porous media IV: three-dimensional stokes flow through random media and regular fractals, Transp. Porous Med. 5, 325–340. [CrossRef] [Google Scholar]
  • Li L., Peters C.A., Celia M. (2006) Upscaling geochemical reaction using pore-scale network modeling, Adv. Water Resour. 29, 1351–1370. [CrossRef] [Google Scholar]
  • McDougall S.R., Sorbie K.S. (1997) Application of network modelling techniques tomultiphase flow in porous media, Petroleum Geoscience 3, 161–169. [CrossRef] [Google Scholar]
  • Mohanty K.K., Salter S.J. (1982) Multiphase flow in porous media: II. Pore-level modeling, SPE paper 11018, presented at the 57th Annual Technical Conference and Exhibition of the SPE AIME, 26-29 Sept, New-Orleans, LA. [Google Scholar]
  • Øren P. (2003) Reconstruction of Berea sandstone and pore-scale modelling of wettability effects, J. Petrol. Sci. Eng. 39, 177–199. [CrossRef] [Google Scholar]
  • Øren P.E., Bakke S. (2002) Process based reconstruction of sandstones and prediction of transport properties, Transp. Porous Med. 46, 311–343. [CrossRef] [Google Scholar]
  • Payatakes A.C., Dias M.M. (1984) Immiscible microdisplacement and ganglion dynamics in porous media, Rev. Chem. Eng. 2, 85–174. [CrossRef] [Google Scholar]
  • Prat M. (1995) Isothermal drying of non-hygroscopic capillary porous materials as an invasion percolation process, Int. J. Multiphase Flow 21, 5, 875–892. [CrossRef] [Google Scholar]
  • Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T. (1992) Numerical Recipes in C: The Art of Scientific Computing, 2nd edn, Cambridge University Press, Cambridge, England. [Google Scholar]
  • Sahimi M. (1995) Flow and Transport in Porous Media and Fractured Rock, VCH Velagsgesellschaft mbH, Weinheim, Germany. [Google Scholar]
  • Shapiro M., Brenner H. (1986) Taylor dispersion of chemically reactive species: irreversible first-order reactions in bulk and on boundaries, Chem. Eng. Sci. 41, 1417–1433. [CrossRef] [Google Scholar]
  • Shapiro M., Brenner H. (1988) Dispersion of a chemically reactive solute in a spatially periodic model of a porous medium, Chem. Eng. Sci. 43, 551–571. [CrossRef] [Google Scholar]
  • Sok R., Knackstedt M., Sheppard A., Pinczewski W., Lindquist W., Venkatarangan A., Paterson L. (2002) Direct and stochastic generation of network models from tomographic images; effect of topology on residual saturations, Transp. Porous Med. 46, 345–371. [CrossRef] [Google Scholar]
  • Stewart T.L., Kim D.S. (2004) Modeling of biomass-plug development and propagation in porous media, Biochem. Eng. J. 17, 107–119. [CrossRef] [Google Scholar]
  • Swoboda-Colberg N.G., Drever J.I. (1993) Mineral dissolution rates in plot-scale field and laboratory experiments, Chem. Geol. 105, 51–69. [CrossRef] [Google Scholar]
  • Varloteaux C., Békri S., Adler P.M. (2013a) Pore network modelling to determine the transport properties in presence of a reactive fluid: From pore to reservoir scale, Adv. Water Resour. 53, 87–100. [CrossRef] [Google Scholar]
  • Varloteaux C., Minh T.V., Békri S., Adler P.M. (2013b) Reactive transport in porous media: Pore-network model approach compared to pore-scale model, Phys. Rev. E 87, 023010. [CrossRef] [Google Scholar]
  • Wood B., Radakovich K., Golfier F. (2007) Effective reaction at a fluid-solid interface: Applications to biotransformation in porous media, Adv. Water Resour. 30, 1630–1647. [CrossRef] [Google Scholar]
  • Youssef S., Rosenberg E., Gland N., Békri S., Vizika O. (2007) Quantitative 3D characterisation of the pore space of real rocks: improved l-CT resolution and pore extraction methodology, Paper SCA2007-17 prepared for presentation at the International Symposium of the Society of Core Analysts, 10-12 Sept, Calgary, pp. 1–13. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.