IFP Energies nouvelles International Conference: NEXTLAB 2014 – Advances in Innovative Experimental Methodology or Simulation Tools used to Create, Test, Control and Analyse Systems, Materials and Molecules
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Numéro 3, May–June 2015
IFP Energies nouvelles International Conference: NEXTLAB 2014 – Advances in Innovative Experimental Methodology or Simulation Tools used to Create, Test, Control and Analyse Systems, Materials and Molecules
Page(s) 419 - 428
DOI https://doi.org/10.2516/ogst/2014031
Publié en ligne 18 novembre 2014
  • Ellis P.R., James D., Bishop P.T., Casci J.L., Lok C.M., Kelly G.J. (2010) Synthesis of High Surface Area Cobalt-on-Alumina Catalysts by Modification with Organic Compounds, in Chemical Industries: Advances in Fischer-Tropsch Synthesis, Catalysts, and Catalysis, Davis B.H, Occelli M.L., (eds), CRC Press, Taylor & Francis Group, Boca Raton, New York, Oxon. [Google Scholar]
  • De la Osa A.R., De Lucas A., Diaz-Maroto J., Romero A., Valverde J.L., Sanchez P. (2012) FTS fuels production over different Co/SiC catalysts, Catalysis Today 187, 173–182. [CrossRef] [Google Scholar]
  • De la Peña O’Shea V.A., Homs N., Fierro J.L.G., Ramirez de la Piscina P. (2006) Structural changes and activation treatment in a Co/SiO2 catalyst for Fischer-Tropsch synthesis, Catalysis Today 114, 422–427. [Google Scholar]
  • Van Santen R.A., Ciobica I.M., Van Steen E., Ghouri M.M. (2011) Mechanistic Issues in Fischer-Tropsch Catalysis, in Advances in Catalysis, B.C. Gates, H. Knözinger (eds),Academic Press, Burlington. [Google Scholar]
  • Saib A.M., Moodley D.J., Ciobica I.M., Hauman M.M., Sigwebela B.H., Weststrate C.J., Niemantsverdriet J.W., Van de Loosdrecht J. (2010) Fundamental understanding of deactivation and regeneration of cobalt Fischer-Tropsch synthesis catalysts, Catalysis Today 154, 271–282. [CrossRef] [Google Scholar]
  • Van de Loosdrecht J., Balzhinimaev B., Dalmon J.A., Niemantsverdriet S.V., Tsybulya S.V., Saib A.M., Van Berge P.J., Visagie J.L. (2007) Cobalt Fischer-Tropsch synthesis: Deactivation by oxidation? Catalysis Today 123, 293–302. [Google Scholar]
  • Pena D., Griboval-Constant A., Diehl F., Lecocq V., Khodakov A.Y. (2013) Agglomeration at the Micrometer Length Scale of Cobalt Nanoparticles in Alumina-Supported Fischer Tropsch Catalysts in a Slurry Reactor, Chem. Cat. Chem. 5, 728–731. [Google Scholar]
  • Pena D., Griboval-Constant A., Lecocq V., Diehl F., Khodakov A.Y. (2013) Influence of operating conditions in a continuously stirred tank reactor on the formation of carbon species on alumina supported cobalt Fischer-Tropsch catalysts, Catalysis Today 215, 43–51. [CrossRef] [Google Scholar]
  • Scalbert J., Meunier F.C., Daniel C., Schuurman Y. (2012) An operando DRIFTS investigation into the resistance against CO2 poisoning of a Rh/alumina catalyst during toluene hydrogenation, Phys. Chem. Chem. Phys. 14, 2159–2163. [CrossRef] [PubMed] [Google Scholar]
  • Meunier F.C. (2010) The design and testing of kinetically-appropriate operando spectroscopic cells for investigating heterogeneous catalytic reactions, Chem. Soc. Rev. 39, 4602–4614. [CrossRef] [PubMed] [Google Scholar]
  • Scalbert J. (2012) New advances in the understanding of catalytic reactions involving biomass-derived model compounds, PhD Thesis, Université de Caen Basse Normandie, France [Google Scholar]
  • Braconnier L., Clémençon I., Legens C., Moizan V., Diehl F., Pillière H., Echegut P., De Sousa Meneses D., Schuurman Y. (2013) An X-ray diffractometer coupled with diffuse reflectance infrared Fourier transform spectroscopy and gas chromatography for in situ and in operando characterization: an innovative analytical laboratory instrument, J. Appl. Cryst. 46, 262–266. [CrossRef] [Google Scholar]
  • Borg O., Dietzel P., Spjelkavik A., Tveten E., Walmsley J., Diplas S., Eri S., Holmen A., Rytter E. (2008) Fischer-Tropsch synthesis: Cobalt particle size and support effects on intrinsic activity and product distribution, J. Catal. 259, 161–164. [CrossRef] [Google Scholar]
  • Sirita J., Phanichphant S., Meunier F.C. (2007) Quantitative analysis of adsorbate concentrations by diffuse reflectance FT-IR, Anal. Chem. 79, 3912–3918. [CrossRef] [PubMed] [Google Scholar]
  • Elezovic N.R., Babic B.M., Radmilovic V., Gajic-Krstajic L.M., Krstajic N.V., Vracar L.M. (2011) A novel platinum-based nanocatalyst at a niobia-doped titania support for the hydrogen oxidation reaction, J. Serb. Chem. Soc. 76, 8, 1139–1152. [CrossRef] [Google Scholar]
  • Chernavskii P.A., Pankina G.V., Lermontov A.S., Lunin V.V. (2003) Size Distribution of Cobalt Particles in Catalysts for the Fischer-Tropsch Synthesis, Kinetics and Catalysis 44, 5, 657–661. [CrossRef] [Google Scholar]
  • Den Breejen J.P., Radstake P.B., Bezemer G.L., Bitter J.H., Froseth V., Holmen A., De Jong K.P. (2009) On the Origin of the Cobalt Particle Size Effects in Fischer-Tropsch Catalysis, J. Am. Chem. Soc. 131, 7197–7203. [CrossRef] [PubMed] [Google Scholar]
  • Ducreux O., Rebours B., Roy-Auberger M., Bazin D. (2009) Microstructure of Supported Cobalt Fischer-Tropsch Catalysts, Oil Gas Sci. Technol. 64, 1, 49–62. [CrossRef] [EDP Sciences] [Google Scholar]
  • Iglesia E. (1997) Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts, Appl. Catal. A 161, 59–78. [CrossRef] [Google Scholar]
  • Karaca H., Safonova O.V., Chambrey S., Fongarland P., Roussel P., Griboval-Constant A., Lacroix M., Khodakov A.Y. (2011) Structure and catalytic performance of Pt-promoted alumina-supported cobalt catalysts under realistic conditions of Fischer-Tropsch synthesis, J. Catal. 277, 14–26. [CrossRef] [Google Scholar]
  • Diehl F., Khodakov A.Y. (2009) Promotion of Cobalt Fischer-Tropsch Catalysts with Noble Metals: a Review, Oil Gas Sci. Technol. 64, 11–24. [CrossRef] [EDP Sciences] [Google Scholar]
  • Sanchez-Escribano V., Larrubia Vargas M.A., Finocchio E., Busca G. (2007) On the mechanisms and the selectivity determining steps in syngas conversion over supported metal catalysts: an IR study, Appl. Catal. A 316, 68–74. [CrossRef] [Google Scholar]
  • Weststrate C.J., Kizilkaya A.C., Rossen E.T., Verhoeven M.W., Ciobica I.M., Saib A.M., Niemantsverdriet J.W. (2012) Atomic and Polymeric Carbon on Co(0001): Surface reconstruction, Graphene Formation, and Catalyst Poisoning, J. Phys. Chem. C 116, 11575–11583. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.