IFP Energies nouvelles International Conference: NEXTLAB 2014 – Advances in Innovative Experimental Methodology or Simulation Tools used to Create, Test, Control and Analyse Systems, Materials and Molecules
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Number 3, May–June 2015
IFP Energies nouvelles International Conference: NEXTLAB 2014 – Advances in Innovative Experimental Methodology or Simulation Tools used to Create, Test, Control and Analyse Systems, Materials and Molecules
Page(s) 419 - 428
DOI https://doi.org/10.2516/ogst/2014031
Published online 18 November 2014
  • Ellis P.R., James D., Bishop P.T., Casci J.L., Lok C.M., Kelly G.J. (2010) Synthesis of High Surface Area Cobalt-on-Alumina Catalysts by Modification with Organic Compounds, in Chemical Industries: Advances in Fischer-Tropsch Synthesis, Catalysts, and Catalysis, Davis B.H, Occelli M.L., (eds), CRC Press, Taylor & Francis Group, Boca Raton, New York, Oxon. [Google Scholar]
  • De la Osa A.R., De Lucas A., Diaz-Maroto J., Romero A., Valverde J.L., Sanchez P. (2012) FTS fuels production over different Co/SiC catalysts, Catalysis Today 187, 173–182. [CrossRef] [Google Scholar]
  • De la Peña O’Shea V.A., Homs N., Fierro J.L.G., Ramirez de la Piscina P. (2006) Structural changes and activation treatment in a Co/SiO2 catalyst for Fischer-Tropsch synthesis, Catalysis Today 114, 422–427. [Google Scholar]
  • Van Santen R.A., Ciobica I.M., Van Steen E., Ghouri M.M. (2011) Mechanistic Issues in Fischer-Tropsch Catalysis, in Advances in Catalysis, B.C. Gates, H. Knözinger (eds),Academic Press, Burlington. [Google Scholar]
  • Saib A.M., Moodley D.J., Ciobica I.M., Hauman M.M., Sigwebela B.H., Weststrate C.J., Niemantsverdriet J.W., Van de Loosdrecht J. (2010) Fundamental understanding of deactivation and regeneration of cobalt Fischer-Tropsch synthesis catalysts, Catalysis Today 154, 271–282. [CrossRef] [Google Scholar]
  • Van de Loosdrecht J., Balzhinimaev B., Dalmon J.A., Niemantsverdriet S.V., Tsybulya S.V., Saib A.M., Van Berge P.J., Visagie J.L. (2007) Cobalt Fischer-Tropsch synthesis: Deactivation by oxidation? Catalysis Today 123, 293–302. [Google Scholar]
  • Pena D., Griboval-Constant A., Diehl F., Lecocq V., Khodakov A.Y. (2013) Agglomeration at the Micrometer Length Scale of Cobalt Nanoparticles in Alumina-Supported Fischer Tropsch Catalysts in a Slurry Reactor, Chem. Cat. Chem. 5, 728–731. [Google Scholar]
  • Pena D., Griboval-Constant A., Lecocq V., Diehl F., Khodakov A.Y. (2013) Influence of operating conditions in a continuously stirred tank reactor on the formation of carbon species on alumina supported cobalt Fischer-Tropsch catalysts, Catalysis Today 215, 43–51. [CrossRef] [Google Scholar]
  • Scalbert J., Meunier F.C., Daniel C., Schuurman Y. (2012) An operando DRIFTS investigation into the resistance against CO2 poisoning of a Rh/alumina catalyst during toluene hydrogenation, Phys. Chem. Chem. Phys. 14, 2159–2163. [CrossRef] [PubMed] [Google Scholar]
  • Meunier F.C. (2010) The design and testing of kinetically-appropriate operando spectroscopic cells for investigating heterogeneous catalytic reactions, Chem. Soc. Rev. 39, 4602–4614. [CrossRef] [PubMed] [Google Scholar]
  • Scalbert J. (2012) New advances in the understanding of catalytic reactions involving biomass-derived model compounds, PhD Thesis, Université de Caen Basse Normandie, France [Google Scholar]
  • Braconnier L., Clémençon I., Legens C., Moizan V., Diehl F., Pillière H., Echegut P., De Sousa Meneses D., Schuurman Y. (2013) An X-ray diffractometer coupled with diffuse reflectance infrared Fourier transform spectroscopy and gas chromatography for in situ and in operando characterization: an innovative analytical laboratory instrument, J. Appl. Cryst. 46, 262–266. [CrossRef] [Google Scholar]
  • Borg O., Dietzel P., Spjelkavik A., Tveten E., Walmsley J., Diplas S., Eri S., Holmen A., Rytter E. (2008) Fischer-Tropsch synthesis: Cobalt particle size and support effects on intrinsic activity and product distribution, J. Catal. 259, 161–164. [CrossRef] [Google Scholar]
  • Sirita J., Phanichphant S., Meunier F.C. (2007) Quantitative analysis of adsorbate concentrations by diffuse reflectance FT-IR, Anal. Chem. 79, 3912–3918. [CrossRef] [PubMed] [Google Scholar]
  • Elezovic N.R., Babic B.M., Radmilovic V., Gajic-Krstajic L.M., Krstajic N.V., Vracar L.M. (2011) A novel platinum-based nanocatalyst at a niobia-doped titania support for the hydrogen oxidation reaction, J. Serb. Chem. Soc. 76, 8, 1139–1152. [CrossRef] [Google Scholar]
  • Chernavskii P.A., Pankina G.V., Lermontov A.S., Lunin V.V. (2003) Size Distribution of Cobalt Particles in Catalysts for the Fischer-Tropsch Synthesis, Kinetics and Catalysis 44, 5, 657–661. [CrossRef] [Google Scholar]
  • Den Breejen J.P., Radstake P.B., Bezemer G.L., Bitter J.H., Froseth V., Holmen A., De Jong K.P. (2009) On the Origin of the Cobalt Particle Size Effects in Fischer-Tropsch Catalysis, J. Am. Chem. Soc. 131, 7197–7203. [CrossRef] [PubMed] [Google Scholar]
  • Ducreux O., Rebours B., Roy-Auberger M., Bazin D. (2009) Microstructure of Supported Cobalt Fischer-Tropsch Catalysts, Oil Gas Sci. Technol. 64, 1, 49–62. [CrossRef] [EDP Sciences] [Google Scholar]
  • Iglesia E. (1997) Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts, Appl. Catal. A 161, 59–78. [CrossRef] [Google Scholar]
  • Karaca H., Safonova O.V., Chambrey S., Fongarland P., Roussel P., Griboval-Constant A., Lacroix M., Khodakov A.Y. (2011) Structure and catalytic performance of Pt-promoted alumina-supported cobalt catalysts under realistic conditions of Fischer-Tropsch synthesis, J. Catal. 277, 14–26. [CrossRef] [Google Scholar]
  • Diehl F., Khodakov A.Y. (2009) Promotion of Cobalt Fischer-Tropsch Catalysts with Noble Metals: a Review, Oil Gas Sci. Technol. 64, 11–24. [CrossRef] [EDP Sciences] [Google Scholar]
  • Sanchez-Escribano V., Larrubia Vargas M.A., Finocchio E., Busca G. (2007) On the mechanisms and the selectivity determining steps in syngas conversion over supported metal catalysts: an IR study, Appl. Catal. A 316, 68–74. [CrossRef] [Google Scholar]
  • Weststrate C.J., Kizilkaya A.C., Rossen E.T., Verhoeven M.W., Ciobica I.M., Saib A.M., Niemantsverdriet J.W. (2012) Atomic and Polymeric Carbon on Co(0001): Surface reconstruction, Graphene Formation, and Catalyst Poisoning, J. Phys. Chem. C 116, 11575–11583. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.