IFP Energies nouvelles International Conference: NEXTLAB 2014 – Advances in Innovative Experimental Methodology or Simulation Tools used to Create, Test, Control and Analyse Systems, Materials and Molecules
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Numéro 3, May–June 2015
IFP Energies nouvelles International Conference: NEXTLAB 2014 – Advances in Innovative Experimental Methodology or Simulation Tools used to Create, Test, Control and Analyse Systems, Materials and Molecules
Page(s) 447 - 454
Section Petrochemicals
DOI https://doi.org/10.2516/ogst/2014030
Publié en ligne 2 octobre 2014
  • Davis M.E. (2002) Ordere porous materials for emerging applications, Nature 417, 813–821. [CrossRef] [PubMed] [Google Scholar]
  • Lauridant N., Daou T.J., Arnold G., Soulard M., Nouali H., Patarin J., Faye D. (2012) Key steps influencing the formation of ZSM-5 films on aluminum substrates, Micro. Meso. Mater. 152, 1–8. [CrossRef] [Google Scholar]
  • Corma A. (2003) State of the art and future challenges of zeolites as catalysts, J. Catal. 216, 298–312. [CrossRef] [Google Scholar]
  • Bartholomew C.H., Farrauto R.J. (2006) Fundamentals of Industrial Catalytic Processes, 2nd edn., John Wiley and Sons, New Jersey, pp. 60–78. [Google Scholar]
  • Corma A. (1995) Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions, Chem. Rev. 95, 559–614. [CrossRef] [Google Scholar]
  • Čejka J., Centi G., Perez-Pariente J., Roth W.J. (2012) Zeolite-based materials for novel catalytic applications: Opportunities, perspectives and open problems, Catal. Today 179, 2–15. [CrossRef] [Google Scholar]
  • Liu Z., Wang Y., Xie Z. (2012) Thoughts on the Future Development of Zeolitic Catalysts from an Industrial Point of View, Chin. J. Catal. 33, 22–38. [CrossRef] [Google Scholar]
  • Thomas F., Degnan Jr. (2000) Applications of zeolites in petroleum refining, Top. Catal. 13, 349–356. [CrossRef] [Google Scholar]
  • Bergerhoff G., Baur W.H., Nowacki W. (1958) Die kristallstrukturen des faujasits, N. Jb. Miner. Mh. 193–200. [Google Scholar]
  • Waltermann G.M., Magee J.S., Griffith S.D. (1993) Commercial preparation and characterization of FCC catalysts, Stud. Surf. Sci. Catal. 76, 105–144. [CrossRef] [Google Scholar]
  • Vermeiren W., Gilson J.-P. (2009) Impact of zeolites on the petroleum and petrochemical industry, Top. Catal. 52, 1131–1161. [CrossRef] [Google Scholar]
  • van Donk S., Janssen A.H., Bitter J.H., de Jong K.P. (2003) Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts, Catal. Rev. – Sci. Eng. 45, 297–319. [CrossRef] [Google Scholar]
  • Bedard R.L. (2002) Zeolites in Industrial Separation and Catalysis, Wiley-VCH, Weinheim, pp. 72–73. [Google Scholar]
  • Tatsumi T. (2010) Handbook of Porous Solids, Wiley-VCH, Weinheim, pp. 913–920. [Google Scholar]
  • Kerr G.T. (1967) Intracrystalline rearrangement of constitutive water in hydrogen zeolite Y, J. Phys. Chem. 71, 4155–4156. [CrossRef] [Google Scholar]
  • Delprato F., Delmotte L., Guth J.-L., Huve L. (1990) Synthesis 1 of new silica-rich cubic and hexagonal faujasites using crown-etherbased supramolecules as templates, Zeolites 10, 546–552. [CrossRef] [Google Scholar]
  • Delprato F., Guth J.-L., Anglerot D., Zivkov C. (1988) Method for the synthesis of zeolites belonging to the structural family of faujasite, products obtained and their use in adsorption and catalysis, FR Patent 8.813.269. [Google Scholar]
  • Dougnier F., Patarin J., Guth J.-L., Anglerot D. (1992) Synthesis, characterization, and catalytic properties of silica-rich faujasite-type zeolite (FAU) and its hexagonal analog (EMT) prepared by using crown-ethers as templates, Zeolites 12, 160–166. [CrossRef] [Google Scholar]
  • Moini A., Schmitt K.D., Valyocsik E.W., Polomski R.F. (1994) The role of diquaternary cations as directing agents in zeolite synthesis, Zeolites 14, 504–511. [CrossRef] [Google Scholar]
  • Lewis D.W., Freeman C.M., Catlow C.R.A. (1995) Predicting the Templating Ability of Organic Additives for the Synthesis of Microporous Materials, J. Phys. Chem. 99, 11194–11202. [CrossRef] [Google Scholar]
  • Schmitt K.D., Kennedy G.J. (1994) Toward the rational design of zeolite synthesis: The synthesis of zeolite ZSM-18, Zeolites 14, 635–642. [CrossRef] [Google Scholar]
  • Casci J.L., Cox P.A., Henney R.P.G., Maberly S., Shannon M.D. (2004) Template design for high-silica zeotypes: A case study of zeolite nes synthesis using a designed template, Stud. Surf. Sci. Catal. 154, 110–117. [CrossRef] [Google Scholar]
  • Thomas J.M., Lewis D.W. (1996) Towards rational design of solid acid catalysts, Z. Phys. Chem. 197, 37–48. [CrossRef] [Google Scholar]
  • Lewis D.W., Sankar G., Wyles J.K., Thomas J.M., Catlow C.R.A., Willock D.J. (2003) Synthesis of a Small-Pore Microporous Material Using a Computationally Designed Template, Angew. Chem. Int. Ed. 36, 2675–2677. [CrossRef] [Google Scholar]
  • Song Y., Li J., Yu J., Wang K., Xu R. (2005) Towards Rational Synthesis of Microporous Aluminophosphate AlPO4-21 by Hydrothermal Combinatorial Approach, Top. Catal. 35, 3–8. [CrossRef] [Google Scholar]
  • Rappe K., Casewit C.J., Colwell K.S., Goddard W.A., Skiff W.M. (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 114, 10024–10035. [CrossRef] [Google Scholar]
  • Brunauer S., Emett P.H., Teller E. (1938) Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc. 60, 309–319. [CrossRef] [Google Scholar]
  • Lippens B.C., de Boer J.H. (1965) Studies on pore systems in catalysts: V. The t method, J. Catal. 4, 319–323. [CrossRef] [Google Scholar]
  • Feijen E.J.P., De Vadder K., Bosschaerts M.H., Lievens J.L., Martens J.A., Grobet P.J., Jacobs P.A. (1994) Role of 18-crown-6 and 15-crown-5 ethers in the crystallization of polytype faujasite zeolites, J. Am. Chem. Soc. 116, 2950–2957. [CrossRef] [Google Scholar]
  • Baerlocher C., McCusker L.B., Chiappetta R. (1994) Location of the 18-crown-6 template in EMC-2 (EMT) Rietveld refinement of the calcined and as-synthesized forms, Micro. Mater. 2, 269–280. [CrossRef] [Google Scholar]
  • Burkett S.L., Davis M.E. (1993) Structure-directing effects in the crown ether-mediated syntheses of FAU and EMT zeolites, Micro. Mater. 1, 265–282. [CrossRef] [Google Scholar]
  • Freidzon A.Y., Vladimirova K.G., Bagatur’yants A.A., Gromov S.P., Alfimov M.V. (2007) Theoretical study of complexation of alkali metal ions in the cavity of arylazacrown ethers, J. Mol. Struct. 809, 61–71. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.