Dossier: Fluids-Polymers Interactions: Permeability, Durability
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Numéro 2, March–April 2015
Dossier: Fluids-Polymers Interactions: Permeability, Durability
Page(s) 367 - 379
Publié en ligne 29 janvier 2014
  • Stankiewicz A. (2003) Reactive separations for process intensification: an industrial perspective, Chemical Engineering and Processing: Process Intensification 42, 3, 137–144. [CrossRef] [Google Scholar]
  • Drioli E., Stankiewiczd A.I., Macedonio F. (2011) Membrane engineering in process intensification - An overview, Journal of Membrane Science 380, 1–8. [CrossRef] [Google Scholar]
  • Baker R.W. (2002) Future directions of membranes gas separation technology, Industrial and Engineering Chemistry Research 41, 1393–1411. [CrossRef] [Google Scholar]
  • Bernardo P., Drioli E., Golemme G. (2009) Membrane Gas Separation: A Review/State of the Art, Industrial and Engineering Chemistry Research 48, 4638–4663. [Google Scholar]
  • Baker R.W., Lokhandwala K. (2008) Natural Gas Processing with Membranes: An Overview, Industrial and Engineering Chemistry Research 47, 2109–2121. [Google Scholar]
  • Budd P.M., Msayib K.J., Tattershall C.E., Ghanema B.S., Reynolds K.J., McKeown N.B., Fritsch D. (2005) Gas separation membranes from polymers of intrinsic microporosity, Journal of Membrane Science 251, 263–269. [CrossRef] [Google Scholar]
  • Chung T.S., Jiang L.Y., Li Y., Kulprathipanja S. (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Progress in Polymer Science 32, 483–507. [Google Scholar]
  • Huang J., Zou J., Ho W.S.W. (2008) Carbon Dioxide Capture Using a CO2-Selective Facilitated Transport Membrane, Industrial and Engineering Chemistry Research 47, 1261–1267. [CrossRef] [Google Scholar]
  • Koros W.J., Mahajan R. (2000) Pushing the limits on possibilities for large scale gas separation: which strategies? Journal of Membrane Science 175, 181–196. [CrossRef] [Google Scholar]
  • Wijmans J.G., Baker R.W. (1995) The solution-diffusion model: a review, Journal of Membrane Science 107, 1–21. [Google Scholar]
  • Vrentas J.S., Duda J.L. (1977) Diffusion in Polymer-Solvent Systems. I. Reexamination of the Free-Volume Theory, Journal of Polymer Science: Polymer Physics Edition 15, 403–416. [Google Scholar]
  • Vrentas J.S., Duda J.L., Ling H.-C., Hou A.-C. (1985) Free-Volume Theories for Self-Diffusion in Polymer Solvent Systems, Predictive Capabilities, Journal of Polymer Science: Polymer Physics Edition 23, 289–304. [CrossRef] [Google Scholar]
  • Thran A., Kroll G., Faupel F. (1999) Correlation Between Fractional Free Volume and Diffusivity of Gas Molecules in Glassy Polymers, Journal of Polymer Science: Part B: Polymer Physics 37, 3344–3358. [CrossRef] [Google Scholar]
  • Vrentas J.S., Duda J.L. (1994) Solvent Self-Diffusion in Glassy Polymer-Solvent Systems, Macromolecules 27, 557–5576. [Google Scholar]
  • Struik L.C.E. (1978) Physical aging in amorphous polymers and other materials, Elsevier, Amsterdam. [Google Scholar]
  • Galvani F., Ruvolo Filho A., Pessan L.A. (2007) Influence of Molecular Structure and Packing on Sorption and Transport Properties of Dichloromethane in Polyetherimides, Journal of Macromolecular Science, Part B: Physics 46, 5, 931–948. [CrossRef] [Google Scholar]
  • Kawakami H., Mikawa M., Nagaoka S. (1996) Gas transport properties in thermally cured aromatic polyimide membranes, Journal of Membrane Science 118, 223–230. [CrossRef] [Google Scholar]
  • Laot C.M., Marand E., Schmittmann B., Zia R.K.P. (2003) Effects of cooling rate and physical aging on the gas transport properties in Polycarbonate, Macromolecules 36, 8673–8684. [CrossRef] [Google Scholar]
  • Tanaka K., Kita H., Okamoto K., Nakamura A., Kusuki Y. (1989) The effect of morphology on gas permeability and permselectivity in polyimide based on 3,3’,4,4’-byphenyltetracarboxylic dianhydride and 4,4’-oxydianiline, Polymer Journal 21, 127–135. [CrossRef] [Google Scholar]
  • Duthie X., Kentish S., Pas S.J., Hill A.J., Powell C., Nagai K., Stevens G., Qiao G. (2008) Thermal Treatment of Dense Polyimide Membranes, Journal of Polymer Science: Part B: Polymer Physics 46, 1879–1890. [CrossRef] [Google Scholar]
  • Dong G., Li H., Chen V. (2011) Plasticization mechanisms and effects of thermal annealing of Matrimid hollow fiber membranes for CO2 removal, Journal of Membrane Science 369, 206–220. [Google Scholar]
  • Fuhrman C., Nutt M., Vichtovonga K., Coleman M.R. (2004) Effect of thermal hysteresis on the gas permeation properties of 6FDA-based polyimides, Journal of Applied Polymer Science 91, 1174–1182. [CrossRef] [Google Scholar]
  • Vaughn J.T., Koros W.J., Johnson J.R., Karvan O. (2012) Effect of thermal annealing on a novel polyamide–imide polymer membrane for aggressive acid gas separations, Journal of Membrane Science 401-402, 163–174. [CrossRef] [Google Scholar]
  • Morliere N., Vallieres C., Perrin L., Roizard D. (2006) Impact of thermal ageing on sorption and diffusion properties of PTMSP, Journal of Membrane Science 270, 123–131. [CrossRef] [Google Scholar]
  • Oliveira N.S., Dorgan J., Coutinho J.A.P., Ferreira A., Daridon J.L., Marrucho I.M. (2007) Gas Solubility of Carbon Dioxide in Poly(lactic acid) at High Pressures: Thermal Treatment Effect, Journal of Polymer Science: Part B: Polymer Physics 45, 616–625. [CrossRef] [Google Scholar]
  • Huang Y., Paul D.R. (2004) Physical aging of thin glassy polymer films monitored by gas permeability, Polymer 45, 25, 8377–8393. [CrossRef] [Google Scholar]
  • Kim J.H., Koros W.J., Paul D.R. (2006) Physical aging of thin 6FDA-based polyimide membranes containing carboxyl acid groups. Part I. Transport properties, Polymer 47, 9, 3094–3103. [CrossRef] [Google Scholar]
  • Huang Y., Wang X., Paul D.R. (2006) Physical aging of thin glassy polymer films: Free volume interpretation, Journal of Membrane Science 277, 219–229. [CrossRef] [Google Scholar]
  • Rowe B.W., Freeman B.D., Paul D.R. (2009) Physical aging of ultrathin glassy polymer films tracked by gas permeability, Polymer 50, 5565–5575. [CrossRef] [Google Scholar]
  • McCaig M.S., Paul D.R. (2000) Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging Part I. Experimental observations, Polymer 41, 629–637. [CrossRef] [Google Scholar]
  • Fu Y.J., Hsiao S.W., Hub C.C., Qui H., Lee K.R., Laic J.Y. (2008) Effect of physical aging on sorption and permeation of small molecules in polyimide membranes, Desalination 234, 58–65. [CrossRef] [Google Scholar]
  • Budd P.M., McKeown N.B. (2010) Highly permeable polymers for gas separation membranes, Polymer Chemistry 1, 63–68. [CrossRef] [Google Scholar]
  • Pekarski P., Hampe J., Bolhm I., Brion H.-G., Kirchheim R. (2000) Effect of Aging and Conditioning on Diffusion and Sorption of Small Molecules in Polymer Glasses, Macromolecules 33, 2192–2199. [CrossRef] [Google Scholar]
  • Hutschinson J.M. (1995) Physical aging of Polymers, Progress in Polymer Science 20, 703–760. [CrossRef] [Google Scholar]
  • Fu Y.J., Hsiao S.W., Hu C.C., Lee K.R., Lai J.Y. (2008) Prediction of long-term physical aging of poly(methyl methacrylate) membranes for gas separation, Desalination 234, 51–57. [CrossRef] [Google Scholar]
  • Hu C.C., Fu Y.J., Hsiao S.W., Lee K.R., Lai J.Y. (2007) Effect of physical aging on the gas transport properties of poly(methyl methacrylate) membranes, Journal of Membrane Science 303, 29–36. [CrossRef] [Google Scholar]
  • Struik L.E. (1987) Volume relaxation and secondary transitions in amorphous polymers, Polymer 28, 1869–1875. [CrossRef] [Google Scholar]
  • Joly C., Le Cerf D., Chappey C., Langevin D., Muller G. (1999) Residual solvent effect on the permeation properties of fluorinated polyimide films, Separation and Purification Technology 16, 47–54. [CrossRef] [Google Scholar]
  • Wang L., Cao Y., Zhou M., Liu Q., Ding X., Yuan Q. (2008) Gas transport properties of 6FDA-TMPDA/MOCA copolyimides, European Polymer Journal 44, 225–232. [CrossRef] [Google Scholar]
  • Recio R., Palacio L., Pradános P., Hernàndez A., Lozano A.E., Marcos A., de la Campa J.G., de Abajo J. (2007) Gas separation of 6FDA–6FpDA membranes: Effect of the solvent on polymer surfaces and permselectivity, Journal of Membrane Science 293, 22–28. [CrossRef] [Google Scholar]
  • Bos A., Pünt I.G.M., Wessling M., Strathmann H. (1998) Plasticization-resistant glassy polyimide membranes for CO2/CH4 separations, Separation and Purification Technology 14, 27–39. [CrossRef] [Google Scholar]
  • Harasimowicz M., Orluk P., Zakrzewska-Trznadel G., Chmielewski A.G. (2007) Application of polyimide membranes for biogas purification and enrichment, Journal of Hazardous Materials 144, 698–702. [CrossRef] [PubMed] [Google Scholar]
  • Scholes C.A., Tao W.X., Stevens G.W., Kentish S.E. (2010) Sorption of Methane, Nitrogen, Carbon Dioxide, and Water in Matrimid 5218, Journal of Applied Polymer Science 117, 2284–2289. [CrossRef] [Google Scholar]
  • Shishatskiy S., Nistor C., Popa M., Pereira Nunes S., Peinemann K.V. (2005) Polyimide Asymmetric Membranes for Hydrogen Separation: Influence of Formation Conditions on Gas Transport Properties, Advanced Engineering Materials 8, 5, 390–397. [CrossRef] [Google Scholar]
  • Koros W.J., Paul D.R. (1978) CO2 sorption in Poly(ethylene terephthalate) above and below the glass transition, Journal of Polymer Science: Polymer Physics Edition 16, 1947–1963. [Google Scholar]
  • Doghieri F., Sarti G.C. (1996) Nonequilibrium Lattice Fluids: A Predictive Model for the Solubility in Glassy Polymers, Macromolecules 29, 7885–7896. [CrossRef] [Google Scholar]
  • Zielinski J.M., Duda J.L. (1992) Predicting Polymer/Solvent Diffusion Coefficients Using Free-Volume Theory, AIChE Journal 38, 3, 405–415. [CrossRef] [Google Scholar]
  • Park J.Y., Paul D.R. (1997) Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method, Journal of Membrane Science 125, 23–39. [CrossRef] [Google Scholar]
  • Robeson L.M. (1999) Polymer membranes for gas separation, Current Opinion in Solid State and Materials Science 4, 549–552. [CrossRef] [Google Scholar]
  • Koros W.J., Fleming G.K. (1993) Membrane based gas separation, Journal of Membrane Science 83, 1–80. [Google Scholar]
  • Kapantaidakis G.C., Koops H. (2002) High flux polyethersulfone–polyimide blend hollow fiber membranes for gas separation, Journal of Membrane Science 204, 153–171. [CrossRef] [Google Scholar]
  • Kiyono M. (2010) Carbon Molecular Sieve Membranes for Natural Gas Separations, PhD Thesis, Georgia Institute of Technology. [Google Scholar]
  • Fu Y.J., Hu C.C., Qui H.Z., Lee K.R., Lai J.Y. (2008) Effects of residual solvent on gas separation properties of polyimide membranes, Separation and Purification Technology 62, 175–182. [CrossRef] [Google Scholar]
  • Macchione M., Jansen J., Deluca G., Tocci E., Longeri M., Drioli E. (2007) Experimental analysis and simulation of the gas transport in dense Hyflon AD60X membranes: Influence of residual solvent, Polymer 48, 2619–2635. [CrossRef] [Google Scholar]
  • Chang K.S., Hsiung C.C., Lin C.C., Tung K.L. (2009) Residual solvent effects on free volume and performance of fluorinated polyimide membranes: a molecular smulation study, Journal of Physical Chemistry B 113, 10159–10169. [CrossRef] [Google Scholar]
  • Minelli M., De Angelis M.G., Doghieri F., Marini M., Toselli M., Pilati F. (2008) Oxygen permeability of novel organic–inorganic coatings: I. Effects of organic–inorganic ratio and molecular weight of the organic component, European Polymer Journal 44, 2581–2588. [CrossRef] [Google Scholar]
  • Crank J. (1975) The Mathematic of Diffusion, Clarendon Press, Oxford. [Google Scholar]
  • Zhang Y., Musselman I.H., Ferraris J.P., Balkus K.J. (2008) Gas Permeability Properties of Mixed-Matrix Matrimid Membranes Containing a Carbon Aerogel: A Material with Both Micropores and Mesopores, Industrial Engineering Chemistry Research 47, 2794–2802. [CrossRef] [Google Scholar]
  • Vu D.Q., Koros W.J., Miller S.J. (2003) Mixed matrix membranes using carbon molecular sieves I. Preparation and experimental results, Journal of Membrane Science 211, 311–334. [CrossRef] [Google Scholar]
  • Comer A.C., Kalika D.S., Rowe B.W., Freeman B.D., Paul D.R. (2009) Dynamic relaxation characteristics of Matrimid® polyimide, Polymer 50, 891–897. [CrossRef] [Google Scholar]
  • Robeson L.M. (1991) Correlation of separation factor versus permeability for polymeric membranes, Journal of Membrane Science 62, 165–185. [CrossRef] [Google Scholar]
  • Robeson L.M. (2008) The upper bound revisited, Journal of Membrane Science 320, 390–400. [Google Scholar]
  • Alentiev A.Y., Yampolskii Y.P. (2000) Free volume model and tradeoff relations of gas permeability and selectivity in glassy polymers, Journal of Membrane Science 165, 201–216. [CrossRef] [Google Scholar]
  • Freeman B.D. (1999) Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes, Macromolecules 32, 2, 375–380. [CrossRef] [Google Scholar]
  • Lin W.-H., Chung T.-S. (2001) Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes, Journal of Membrane Science 186, 183–193. [CrossRef] [Google Scholar]
  • Langsam M., Robeson L.M. (1989) Substituted Propyne Polymers-Part II. Effects of Aging on the Gas Permeability Properties of Poly[1-(trimethylsilyl)Propyne] for Gas Separation Membranes, Polymer Engineering and Science 29, 1, 44–54. [CrossRef] [Google Scholar]
  • Cheng T.W., Keskkula H., Paul D.R. (1992) Thermal aging of impact-modified polycarbonate, Journal of Applied Polymer Science 45, 3, 531–551. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.