Dossier: Fluids-Polymers Interactions: Permeability, Durability
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Number 2, March–April 2015
Dossier: Fluids-Polymers Interactions: Permeability, Durability
Page(s) 367 - 379
DOI https://doi.org/10.2516/ogst/2013188
Published online 29 January 2014
  • Stankiewicz A. (2003) Reactive separations for process intensification: an industrial perspective, Chemical Engineering and Processing: Process Intensification 42, 3, 137–144. [CrossRef] [Google Scholar]
  • Drioli E., Stankiewiczd A.I., Macedonio F. (2011) Membrane engineering in process intensification - An overview, Journal of Membrane Science 380, 1–8. [CrossRef] [Google Scholar]
  • Baker R.W. (2002) Future directions of membranes gas separation technology, Industrial and Engineering Chemistry Research 41, 1393–1411. [CrossRef] [Google Scholar]
  • Bernardo P., Drioli E., Golemme G. (2009) Membrane Gas Separation: A Review/State of the Art, Industrial and Engineering Chemistry Research 48, 4638–4663. [Google Scholar]
  • Baker R.W., Lokhandwala K. (2008) Natural Gas Processing with Membranes: An Overview, Industrial and Engineering Chemistry Research 47, 2109–2121. [Google Scholar]
  • Budd P.M., Msayib K.J., Tattershall C.E., Ghanema B.S., Reynolds K.J., McKeown N.B., Fritsch D. (2005) Gas separation membranes from polymers of intrinsic microporosity, Journal of Membrane Science 251, 263–269. [CrossRef] [Google Scholar]
  • Chung T.S., Jiang L.Y., Li Y., Kulprathipanja S. (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Progress in Polymer Science 32, 483–507. [Google Scholar]
  • Huang J., Zou J., Ho W.S.W. (2008) Carbon Dioxide Capture Using a CO2-Selective Facilitated Transport Membrane, Industrial and Engineering Chemistry Research 47, 1261–1267. [CrossRef] [Google Scholar]
  • Koros W.J., Mahajan R. (2000) Pushing the limits on possibilities for large scale gas separation: which strategies? Journal of Membrane Science 175, 181–196. [CrossRef] [Google Scholar]
  • Wijmans J.G., Baker R.W. (1995) The solution-diffusion model: a review, Journal of Membrane Science 107, 1–21. [Google Scholar]
  • Vrentas J.S., Duda J.L. (1977) Diffusion in Polymer-Solvent Systems. I. Reexamination of the Free-Volume Theory, Journal of Polymer Science: Polymer Physics Edition 15, 403–416. [Google Scholar]
  • Vrentas J.S., Duda J.L., Ling H.-C., Hou A.-C. (1985) Free-Volume Theories for Self-Diffusion in Polymer Solvent Systems, Predictive Capabilities, Journal of Polymer Science: Polymer Physics Edition 23, 289–304. [CrossRef] [Google Scholar]
  • Thran A., Kroll G., Faupel F. (1999) Correlation Between Fractional Free Volume and Diffusivity of Gas Molecules in Glassy Polymers, Journal of Polymer Science: Part B: Polymer Physics 37, 3344–3358. [CrossRef] [Google Scholar]
  • Vrentas J.S., Duda J.L. (1994) Solvent Self-Diffusion in Glassy Polymer-Solvent Systems, Macromolecules 27, 557–5576. [Google Scholar]
  • Struik L.C.E. (1978) Physical aging in amorphous polymers and other materials, Elsevier, Amsterdam. [Google Scholar]
  • Galvani F., Ruvolo Filho A., Pessan L.A. (2007) Influence of Molecular Structure and Packing on Sorption and Transport Properties of Dichloromethane in Polyetherimides, Journal of Macromolecular Science, Part B: Physics 46, 5, 931–948. [CrossRef] [Google Scholar]
  • Kawakami H., Mikawa M., Nagaoka S. (1996) Gas transport properties in thermally cured aromatic polyimide membranes, Journal of Membrane Science 118, 223–230. [CrossRef] [Google Scholar]
  • Laot C.M., Marand E., Schmittmann B., Zia R.K.P. (2003) Effects of cooling rate and physical aging on the gas transport properties in Polycarbonate, Macromolecules 36, 8673–8684. [CrossRef] [Google Scholar]
  • Tanaka K., Kita H., Okamoto K., Nakamura A., Kusuki Y. (1989) The effect of morphology on gas permeability and permselectivity in polyimide based on 3,3’,4,4’-byphenyltetracarboxylic dianhydride and 4,4’-oxydianiline, Polymer Journal 21, 127–135. [CrossRef] [Google Scholar]
  • Duthie X., Kentish S., Pas S.J., Hill A.J., Powell C., Nagai K., Stevens G., Qiao G. (2008) Thermal Treatment of Dense Polyimide Membranes, Journal of Polymer Science: Part B: Polymer Physics 46, 1879–1890. [CrossRef] [Google Scholar]
  • Dong G., Li H., Chen V. (2011) Plasticization mechanisms and effects of thermal annealing of Matrimid hollow fiber membranes for CO2 removal, Journal of Membrane Science 369, 206–220. [Google Scholar]
  • Fuhrman C., Nutt M., Vichtovonga K., Coleman M.R. (2004) Effect of thermal hysteresis on the gas permeation properties of 6FDA-based polyimides, Journal of Applied Polymer Science 91, 1174–1182. [CrossRef] [Google Scholar]
  • Vaughn J.T., Koros W.J., Johnson J.R., Karvan O. (2012) Effect of thermal annealing on a novel polyamide–imide polymer membrane for aggressive acid gas separations, Journal of Membrane Science 401-402, 163–174. [CrossRef] [Google Scholar]
  • Morliere N., Vallieres C., Perrin L., Roizard D. (2006) Impact of thermal ageing on sorption and diffusion properties of PTMSP, Journal of Membrane Science 270, 123–131. [CrossRef] [Google Scholar]
  • Oliveira N.S., Dorgan J., Coutinho J.A.P., Ferreira A., Daridon J.L., Marrucho I.M. (2007) Gas Solubility of Carbon Dioxide in Poly(lactic acid) at High Pressures: Thermal Treatment Effect, Journal of Polymer Science: Part B: Polymer Physics 45, 616–625. [CrossRef] [Google Scholar]
  • Huang Y., Paul D.R. (2004) Physical aging of thin glassy polymer films monitored by gas permeability, Polymer 45, 25, 8377–8393. [CrossRef] [Google Scholar]
  • Kim J.H., Koros W.J., Paul D.R. (2006) Physical aging of thin 6FDA-based polyimide membranes containing carboxyl acid groups. Part I. Transport properties, Polymer 47, 9, 3094–3103. [CrossRef] [Google Scholar]
  • Huang Y., Wang X., Paul D.R. (2006) Physical aging of thin glassy polymer films: Free volume interpretation, Journal of Membrane Science 277, 219–229. [CrossRef] [Google Scholar]
  • Rowe B.W., Freeman B.D., Paul D.R. (2009) Physical aging of ultrathin glassy polymer films tracked by gas permeability, Polymer 50, 5565–5575. [CrossRef] [Google Scholar]
  • McCaig M.S., Paul D.R. (2000) Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging Part I. Experimental observations, Polymer 41, 629–637. [CrossRef] [Google Scholar]
  • Fu Y.J., Hsiao S.W., Hub C.C., Qui H., Lee K.R., Laic J.Y. (2008) Effect of physical aging on sorption and permeation of small molecules in polyimide membranes, Desalination 234, 58–65. [CrossRef] [Google Scholar]
  • Budd P.M., McKeown N.B. (2010) Highly permeable polymers for gas separation membranes, Polymer Chemistry 1, 63–68. [CrossRef] [Google Scholar]
  • Pekarski P., Hampe J., Bolhm I., Brion H.-G., Kirchheim R. (2000) Effect of Aging and Conditioning on Diffusion and Sorption of Small Molecules in Polymer Glasses, Macromolecules 33, 2192–2199. [CrossRef] [Google Scholar]
  • Hutschinson J.M. (1995) Physical aging of Polymers, Progress in Polymer Science 20, 703–760. [CrossRef] [Google Scholar]
  • Fu Y.J., Hsiao S.W., Hu C.C., Lee K.R., Lai J.Y. (2008) Prediction of long-term physical aging of poly(methyl methacrylate) membranes for gas separation, Desalination 234, 51–57. [CrossRef] [Google Scholar]
  • Hu C.C., Fu Y.J., Hsiao S.W., Lee K.R., Lai J.Y. (2007) Effect of physical aging on the gas transport properties of poly(methyl methacrylate) membranes, Journal of Membrane Science 303, 29–36. [CrossRef] [Google Scholar]
  • Struik L.E. (1987) Volume relaxation and secondary transitions in amorphous polymers, Polymer 28, 1869–1875. [CrossRef] [Google Scholar]
  • Joly C., Le Cerf D., Chappey C., Langevin D., Muller G. (1999) Residual solvent effect on the permeation properties of fluorinated polyimide films, Separation and Purification Technology 16, 47–54. [CrossRef] [Google Scholar]
  • Wang L., Cao Y., Zhou M., Liu Q., Ding X., Yuan Q. (2008) Gas transport properties of 6FDA-TMPDA/MOCA copolyimides, European Polymer Journal 44, 225–232. [CrossRef] [Google Scholar]
  • Recio R., Palacio L., Pradános P., Hernàndez A., Lozano A.E., Marcos A., de la Campa J.G., de Abajo J. (2007) Gas separation of 6FDA–6FpDA membranes: Effect of the solvent on polymer surfaces and permselectivity, Journal of Membrane Science 293, 22–28. [CrossRef] [Google Scholar]
  • Bos A., Pünt I.G.M., Wessling M., Strathmann H. (1998) Plasticization-resistant glassy polyimide membranes for CO2/CH4 separations, Separation and Purification Technology 14, 27–39. [CrossRef] [Google Scholar]
  • Harasimowicz M., Orluk P., Zakrzewska-Trznadel G., Chmielewski A.G. (2007) Application of polyimide membranes for biogas purification and enrichment, Journal of Hazardous Materials 144, 698–702. [CrossRef] [PubMed] [Google Scholar]
  • Scholes C.A., Tao W.X., Stevens G.W., Kentish S.E. (2010) Sorption of Methane, Nitrogen, Carbon Dioxide, and Water in Matrimid 5218, Journal of Applied Polymer Science 117, 2284–2289. [CrossRef] [Google Scholar]
  • Shishatskiy S., Nistor C., Popa M., Pereira Nunes S., Peinemann K.V. (2005) Polyimide Asymmetric Membranes for Hydrogen Separation: Influence of Formation Conditions on Gas Transport Properties, Advanced Engineering Materials 8, 5, 390–397. [CrossRef] [Google Scholar]
  • Koros W.J., Paul D.R. (1978) CO2 sorption in Poly(ethylene terephthalate) above and below the glass transition, Journal of Polymer Science: Polymer Physics Edition 16, 1947–1963. [Google Scholar]
  • Doghieri F., Sarti G.C. (1996) Nonequilibrium Lattice Fluids: A Predictive Model for the Solubility in Glassy Polymers, Macromolecules 29, 7885–7896. [CrossRef] [Google Scholar]
  • Zielinski J.M., Duda J.L. (1992) Predicting Polymer/Solvent Diffusion Coefficients Using Free-Volume Theory, AIChE Journal 38, 3, 405–415. [CrossRef] [Google Scholar]
  • Park J.Y., Paul D.R. (1997) Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method, Journal of Membrane Science 125, 23–39. [CrossRef] [Google Scholar]
  • Robeson L.M. (1999) Polymer membranes for gas separation, Current Opinion in Solid State and Materials Science 4, 549–552. [CrossRef] [Google Scholar]
  • Koros W.J., Fleming G.K. (1993) Membrane based gas separation, Journal of Membrane Science 83, 1–80. [Google Scholar]
  • Kapantaidakis G.C., Koops H. (2002) High flux polyethersulfone–polyimide blend hollow fiber membranes for gas separation, Journal of Membrane Science 204, 153–171. [CrossRef] [Google Scholar]
  • Kiyono M. (2010) Carbon Molecular Sieve Membranes for Natural Gas Separations, PhD Thesis, Georgia Institute of Technology. [Google Scholar]
  • Fu Y.J., Hu C.C., Qui H.Z., Lee K.R., Lai J.Y. (2008) Effects of residual solvent on gas separation properties of polyimide membranes, Separation and Purification Technology 62, 175–182. [CrossRef] [Google Scholar]
  • Macchione M., Jansen J., Deluca G., Tocci E., Longeri M., Drioli E. (2007) Experimental analysis and simulation of the gas transport in dense Hyflon AD60X membranes: Influence of residual solvent, Polymer 48, 2619–2635. [CrossRef] [Google Scholar]
  • Chang K.S., Hsiung C.C., Lin C.C., Tung K.L. (2009) Residual solvent effects on free volume and performance of fluorinated polyimide membranes: a molecular smulation study, Journal of Physical Chemistry B 113, 10159–10169. [CrossRef] [Google Scholar]
  • Minelli M., De Angelis M.G., Doghieri F., Marini M., Toselli M., Pilati F. (2008) Oxygen permeability of novel organic–inorganic coatings: I. Effects of organic–inorganic ratio and molecular weight of the organic component, European Polymer Journal 44, 2581–2588. [CrossRef] [Google Scholar]
  • Crank J. (1975) The Mathematic of Diffusion, Clarendon Press, Oxford. [Google Scholar]
  • Zhang Y., Musselman I.H., Ferraris J.P., Balkus K.J. (2008) Gas Permeability Properties of Mixed-Matrix Matrimid Membranes Containing a Carbon Aerogel: A Material with Both Micropores and Mesopores, Industrial Engineering Chemistry Research 47, 2794–2802. [CrossRef] [Google Scholar]
  • Vu D.Q., Koros W.J., Miller S.J. (2003) Mixed matrix membranes using carbon molecular sieves I. Preparation and experimental results, Journal of Membrane Science 211, 311–334. [CrossRef] [Google Scholar]
  • Comer A.C., Kalika D.S., Rowe B.W., Freeman B.D., Paul D.R. (2009) Dynamic relaxation characteristics of Matrimid® polyimide, Polymer 50, 891–897. [CrossRef] [Google Scholar]
  • Robeson L.M. (1991) Correlation of separation factor versus permeability for polymeric membranes, Journal of Membrane Science 62, 165–185. [CrossRef] [Google Scholar]
  • Robeson L.M. (2008) The upper bound revisited, Journal of Membrane Science 320, 390–400. [Google Scholar]
  • Alentiev A.Y., Yampolskii Y.P. (2000) Free volume model and tradeoff relations of gas permeability and selectivity in glassy polymers, Journal of Membrane Science 165, 201–216. [CrossRef] [Google Scholar]
  • Freeman B.D. (1999) Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes, Macromolecules 32, 2, 375–380. [CrossRef] [Google Scholar]
  • Lin W.-H., Chung T.-S. (2001) Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes, Journal of Membrane Science 186, 183–193. [CrossRef] [Google Scholar]
  • Langsam M., Robeson L.M. (1989) Substituted Propyne Polymers-Part II. Effects of Aging on the Gas Permeability Properties of Poly[1-(trimethylsilyl)Propyne] for Gas Separation Membranes, Polymer Engineering and Science 29, 1, 44–54. [CrossRef] [Google Scholar]
  • Cheng T.W., Keskkula H., Paul D.R. (1992) Thermal aging of impact-modified polycarbonate, Journal of Applied Polymer Science 45, 3, 531–551. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.