Dossier: Post Combustion CO2 Capture
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Numéro 6, November-December 2014
Dossier: Post Combustion CO2 Capture
Page(s) 1091 - 1104
DOI https://doi.org/10.2516/ogst/2013205
Publié en ligne 11 avril 2014
  • Aouini I., Ledoux A., Estel L., Mary S., Grimaud J., Valognes B. (2011) Study of carbon dioxide capture from industrial incinerator flue gas on a laboratory scale pilot, Energy Procedia 4, 1729–1736. [CrossRef] [Google Scholar]
  • Aouini I., Ledoux A., Estel L., Mary S., Evrard P., Valognes B. (2012) Experimental study of carbon dioxide capture from synthetic industrial incinerator flue gas with a pilot and laboratory measurements, Procedia Engineering 42, 704–720. [CrossRef] [Google Scholar]
  • Artanto Y., Jansen J., Pearson P., Do T., Cottrell A., Meuleman E., Feron P. (2012) Performance of MEA and amine-blends in the CSIRO PCC pilot plant at Loy Yang Power in Australia, Fuel 101, 264–275. [CrossRef] [Google Scholar]
  • Bedell S.A. (2009) Oxidative degradation mechanisms for amines in flue gas capture, Energy Procedia 1, 771–778. [CrossRef] [Google Scholar]
  • Bedell S.A. (2011) Amine autoxidation in flue gas CO2 capture – Mechanistic lessons learned from other gas treating processes, International Journal of Greenhouse Gas Control 5, 1, 1–6. doi: 10.1016/j.ijggc.2010.01.007. [CrossRef] [Google Scholar]
  • Bedell S.A., Worley C.M., Darst K., Simmons K. (2011) Thermal and oxidative disproportionation in amine degradation - O2 stoichiometry and mechanistic implications, International Journal of Greenhouse Gas Control 5, 3, 401–404. doi: 10.1016/j.ijggc.2010.03.005. [CrossRef] [Google Scholar]
  • Bello A., Idem R. (2005) Pathway for the formation of products of oxidative degradation of CO2-loaded concentrated aqueous MonoEthanolAmine solutions during CO2 absorption from flue gases, Industrial and Engineering Chemistry Research 44, 945–969. [CrossRef] [Google Scholar]
  • Carta G. (1984) Role of HNO2 in the absorption of nitrogen oxides in alkaline solutions, Industrial and Engineering Chemistry Research 23, 260–264. [Google Scholar]
  • Chapel D.G., Mariz C.L., Ernest J. (1999) Recovery of CO2 from flue gases: Commercial trends, The Canadian Society of Chemical Engineers Annual Meeting, Saskatoon, Saskatchewan, Canada, 4-6 Oct. [Google Scholar]
  • Chen E. (2007) Carbon dioxide absorption into piperazine promoted potassium carbonate using structured packing, PhD Thesis, University of Texas at Austin. [Google Scholar]
  • Chi S., Rochelle G.T. (2002) Oxidative degradation of MonoEthanolAmine, Industrial and Engineering Chemistry Research 41, 4178–4186. [CrossRef] [Google Scholar]
  • Davis D.J. (2009) Thermal degradation of aqueous amines used for carbon dioxide capture, PhD Thesis, University of Texas at Austin. [Google Scholar]
  • Davis D.J., Rochelle G.T. (2009) Thermal degradation of MonoEthanolAmine at stripper conditions, Energy Procedia 1, 327–333. [CrossRef] [Google Scholar]
  • Decanini E., Nardini G., Paglianti A. (2000) Absorption of nitrogen oxides in columns equipped with low pressure drops structured packing, Industrial and Engineering Chemistry Research 3, 5003–5011. [CrossRef] [Google Scholar]
  • DeMontigny D., Tontiwachwuthikul P., Chakma A. (2001) Parametric Studies of Carbon Dioxide Absorption into Highly Concentrated MonoEthanolAmine Solutions, The Canadian Journal of Chemical Engineering 79, 137–142. [CrossRef] [Google Scholar]
  • Dugas R.E. (2006) Pilot plant study of carbon dioxide capture by aqueous MonoEthanolAmine, M.S.E Thesis, University of Texas at Austin. [Google Scholar]
  • Dupart M.S., Bacon T.R., Edwards D.J. (1993a) Understanding corrosion in Alkanolamine gas treating plants Part I, Hydrocarbon Processing April, 75–80. [Google Scholar]
  • Dupart M.S., Bacon T.R., Edwards D.J. (1993b) Understanding corrosion in Alkanolamine gas treating plants Part II, Hydrocarbon Processing May, 89–94. [Google Scholar]
  • Gabrielsen J. (2007) CO2 Capture from Coal Fired Power Plants, PhD Thesis, Technical University of Denmark. [Google Scholar]
  • Goff G., Rochelle G.T. (2004) MonoEthanolAmine degradation: O2 mass transfer Effects under CO2 capture conditions, Industrial and Engineering Chemistry Research 43, 6400–6408. [Google Scholar]
  • Goff G., Rochelle G.T. (2006) Oxidation inhibitors for copper and iron catalyzed degradation of MonoEthanolAmine, Industrial and Engineering Chemistry Research 45, 2513–2521. [CrossRef] [Google Scholar]
  • Hüpen B., Kenig E.Y. (2005) Rigorous modelling of NOx absorption in tray and packed columns, Chemical Engineering Science 60, 22, 6462–6471. [CrossRef] [Google Scholar]
  • Idem R., Wilson M., Tontiwachwuthikul P., Chakma A., Veawab A., Aroonwilas A., Gelowitz D. (2006) Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the university of Regina CO2 capture technology development plant and the Boundary Dam CO2 capture demonstration plant, Industrial and Engineering Chemistry Research 45, 2414–2420. [Google Scholar]
  • Idem R., Gelowitz D., Tontiwachwuthikul P. (2009) Evaluation of the performance of various amine based solvents in an optimized multipurpose technology development pilot plant, Energy Procedia 1, 1543–1548. [CrossRef] [Google Scholar]
  • Johnsen K., Helle K., Myhrvold T. (2009) Scale-up of CO2 capture processes: The role of technology qualification, Energy Procedia 1, 163–170. [CrossRef] [Google Scholar]
  • Jou F.Y., Mather A.E., Otto F.D. (1995) The Solubility of CO2 in a 30 Mass Percent MonoEthanolAmine Solution, The Canadian Journal of Chemical Engineering 73, 140–147. [Google Scholar]
  • Kittel J., Idem R., Gelowitz D., Tontiwachwuthikul P., Parraina G., Bonneau A. (2009) Corrosion in MEA units for CO2 capture: Pilot plant studies, Energy Procedia 1, 791–797. [CrossRef] [Google Scholar]
  • Knudsen J.N., Jensen J.N., Vilhelmsen P.J., Biede O. (2009) Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents, Energy Procedia 1, 783–790. [CrossRef] [Google Scholar]
  • Kohl A., Nielsen R. (1997) Gas purification, 5th ed., Gulf Professional Publishing. [Google Scholar]
  • Kvamsdal H.M., Rochelle G.T. (2008) Effects of the temperature bulge in CO2 absorption from flue gas by aqueous MonoEthanolAmine, Industrial and Engineering Chemistry Research 47, 867–875. [CrossRef] [Google Scholar]
  • Lemaire E., Bouillion P.A., Gomez A., Kittel J., Gonzalez S., Carrette P.L., Delfort B., Mongin P., Alix P., Normand L. (2011) New IFP optimized first generation process for post-combustion carbon capture: HiCapt+TM, Energy procedia 4, 1361–1368. [CrossRef] [Google Scholar]
  • Lepaumier H., Picq D., Carette P.L. (2009a) New amines for CO2 capture. I. Mechanisms of amine degradation in the presence of CO2, Industrial and Engineering Chemistry Research 48, 9061–9067. [Google Scholar]
  • Lepaumier H., Picq D., Carette P.L. (2009b) Degradation study of new solvents for CO2 capture in post-combustion, Energy Procedia 1, 893–900. [CrossRef] [Google Scholar]
  • Lepaumier H., Picq D., Carette P.L. (2009c) New amines for CO2 capture. II. Oxidative degradation mechanisms, Industrial and Engineering Chemistry Research 48, 9068–9075. [Google Scholar]
  • Mangalapally H.P., Hasse H. (2010) Pilot plant experiments with MEA and new solvents for post combustion CO2 capture by reactive absorption, Distillation Absorption, Eindhoven, The Netherlands. [Google Scholar]
  • Mejdell T., Knuutila H., Hoff K.A., Hallvard V.A., Svendsen F., Vassbotn T., Juliussen O., Tobiesen A., Einbu A. (2011) Novel full height pilot plant for solvent development and model validation, Energy Procedia 4, 1753–1760. [CrossRef] [Google Scholar]
  • Mimura T., Shimojo S., Suda T., Iijima M., Mitsuoka S. (1995) Research and development on energy saving technology for flue gas carbon dioxide recovery and steam dioxide recovery in power plant, Energy conversion management 36, 6–9. [Google Scholar]
  • Notz R., Mangalapally H.P., Hasse H. (2012) Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA, International Journal of Greenhouse Gas Control 6, 84–112. [Google Scholar]
  • Rochelle G.T., Bishnoi S., Chi S., Dang H., Santos J. (2001) Research needs for CO2 capture from flue gas by aqueous absorption/stripping, Final report for DOE contract DE-AF26-99FT01029. [Google Scholar]
  • Rochelle G.T. (2012) Thermal degradation of amines for CO2 capture, Current Opinion in Chemical Engineering 1, 183–190. [CrossRef] [Google Scholar]
  • Sexton A., Rochelle G.T. (2009) Catalysts and inhibitors for MEA oxidation, Energy Procedia 1, 1179–1185. [CrossRef] [Google Scholar]
  • Steeneveldt R., Berger B., Torp T.A. (2006) CO2 capture and storage closing the knowing–doing gap, Trans. IChemE, Part A, Chemical Engineering Research and design 84, 739–763. [CrossRef] [Google Scholar]
  • Supap T., Idem R., Veawab A., Aroonwilas A., Tontiwachwuthikul P., Chakma A., Kybett B.D. (2001) Kinetics of the oxidantive degradation of aqueous MonoEthanolAmine in flue gas treating unit, Industrial and Engineering Chemistry Research 40, 3445–3450. [CrossRef] [Google Scholar]
  • Supap T., Idem R., Tontiwachwuthikul P., Saiwan C. (2006) Analysis of MonoEthanolAmine and its oxidative degradation products during CO2 absorption from flue gases: A comparative study of GC-MS, HPLC-RID, and CE-DAD analytical techniques and possible optimum combinations, Industrial and Engineering Chemistry Research 45, 2437–2451. [Google Scholar]
  • Tatsumi M., Yagi Y., Kadono K., Kaibara K., Iijima M., Ohishi T., Tanaka H., Hirita T., Mitchell R. (2011) New energy efficient processes and improvements for flue gas CO2 capture, Energy Procedia 4, 1347–1352. [CrossRef] [Google Scholar]
  • Tobiesen F.A., Svendsen H.F., Juliussen O. (2007) Experimental validation of a rigorous absorber model for CO2 postcombustion capture, AIChE Journal 53, 846–864. [Google Scholar]
  • Veawab A., Aroonwilas A. (2002) Identification of oxidizing agents in aqueous amine-CO2 systems using mechanistic corrosion model, Corrosion Science 44, 5, 967–987. [CrossRef] [Google Scholar]
  • Wang M., Lawal A., Stephenson P., Sidders J., Ramshaw C. (2011) Post-combustion CO2 capture with chemical absorption: A state-of-the-art review, Chemical Engineering Research and Design 89, 1609–1624. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.