Dossier: Post Combustion CO2 Capture
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Numéro 6, November-December 2014
Dossier: Post Combustion CO2 Capture
Page(s) 1059 - 1068
DOI https://doi.org/10.2516/ogst/2013156
Publié en ligne 15 novembre 2013
  • Qi Z., Cussler E.L. (1985) Microporous hollow fibers for gas absorption. Part 1: Mass transfer in the liquid, J. Membr. Sci. 23, 321–332. [CrossRef] [Google Scholar]
  • Qi Z., Cussler E.L. (1985) Microporous hollow fibers for gas absorption. Part 2: Mass transfer across the membrane, J. Membr. Sci. 23, 333–345. [CrossRef] [Google Scholar]
  • Gabelman A., Hwang S.T. (1999) Hollow fiber membrane contactors, J. Membr. Sci. 159, 61–106. [CrossRef] [Google Scholar]
  • de Montigny D., Tontiwachwuthikul P., Chakma A. (2005) Comparing the absorption performance of packed columns and membrane contactors, Ind. Eng. Chem. Res. 44, 5726–5732. [CrossRef] [Google Scholar]
  • Karoor S., Sirkar K.K. (1993) Gas absorption studies in microporous hollow fiber membrane modules, Ind. Eng. Chem. Res. 32, 674–684. [CrossRef] [Google Scholar]
  • Falk-Pedersen O., Dannstrom H. (1997) Separation of carbon dioxide from offshore gas turbine exhaust, Energy Convers. Manag. 38, S81–S86. [CrossRef] [Google Scholar]
  • Feron P.H.M., Jansen A.E. (1995) Capture of carbon dioxide using membrane gas absorption and reuse in the horticultural industry, Energy Convers. Manag. 36, 411–414. [CrossRef] [Google Scholar]
  • Klaassen R., Feron P., Jansen A. (2008) Membrane contactor applications, Desalination 224, 81–87. [CrossRef] [Google Scholar]
  • Li J.L., Chen B.-H. (2005) Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors, Sep. Purif. Technol. 41, 109–122. [CrossRef] [Google Scholar]
  • Mansourizadeh A., Ismail A.F. (2009) Hollow fiber gas-liquid membrane contactors for acid gas capture: A review, J. hazardous Materials 171, 38–53. [CrossRef] [Google Scholar]
  • Rangwala H.A. (1996) Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors, J. Membr. Sci. 112, 229–240. [CrossRef] [Google Scholar]
  • Yang H., Xu Z., Fan M., Gupta R., Slimane R.B., Bland A.E., Wright I. (2008) Progress in carbon dioxide separation and capture: A review, J. Environ. Sci. 20, 14–27. [CrossRef] [Google Scholar]
  • Marzouk S.A.M., Al-Marzouqi M.H., El-Naas M.H., Abdullatif N., Ismail Z.M. (2010) Removal of carbon dioxide from pressurized CO2–CH4 gas mixture using hollow fiber membrane contactors, J. Membr. Sci. 351, 21–27. [CrossRef] [Google Scholar]
  • Wang R., Zhang H.Y., Feron P.H.M., Liang D.T. (2005) Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors, Sep. Purifi. Technol. 46, 33–40. [CrossRef] [Google Scholar]
  • Lu J.G., Zheng Y.F., Cheng M.D. (2008) Wetting mechanism in mass transfer process of hydrophobic membrane gas absorption, J. Membr. Sci. 308, 180–190. [CrossRef] [Google Scholar]
  • Rongwong W., Jiraratananon R., Atchariyawut S. (2009) Experimantal study on membrane wetting in gas-liquid membrane contacting process for CO2 absorption by single and mixed absorbents, Sep. Purifi. Technol. 69, 118–125. [CrossRef] [Google Scholar]
  • Zhang H.Y., Wang R., Liang D.T., Tay J.H. (2008) Theoretical and experimental studies of membrane wetting in the membrane gas-liquid contacting process for CO2 absorption, J. Membr. Sci. 308, 162–170. [CrossRef] [Google Scholar]
  • Li K., Teo W.K. (1998) Use of permeation and absorption methods for CO2 removal in hollow fiber membrane modules, Sep. Purifi. Technol. 13, 79–88. [CrossRef] [Google Scholar]
  • Li K., Teo W.K. (1996) An ultraskin skinned hollow fibre module for gas absorption at elevated pressures, Trans. IChemE 74, 856–862. [CrossRef] [Google Scholar]
  • Al-Saffar H.B., Ozturk B., Hughes R. (1997) A comparison of porous and non-porous gas-liquid membrane contactors for gas separation, Trans. IChemE 75, 685–692. [CrossRef] [Google Scholar]
  • Feron P.H.M., Volkov V.V., Khotimsky V.S., Teplyakov V.V. (2006) Membrane gaz separation, WO2006004400. [Google Scholar]
  • Teplyakov V.V., Gassanova L.G., Sostina E.G., Slepova E.V., Modigell M., Netrusov A.I. (2002) Lab-scale bioreactor integrated with active membrane system for hydrogen production: experience and prospects, Int. J. Hydrogen Energy 27, 1149–1155. [CrossRef] [Google Scholar]
  • Bessarabov D.G., Jacobs E.P., Sanderson R.D., Beckman I.N. (1996) Use of nonporous polymeric flat-sheet gas-separation membranes in a membrane-liquid contactor: experimental studies, J. Membr. Sci. 113, 275–284. [CrossRef] [Google Scholar]
  • Trusov A., Legkov S., van den Broeke L.J.P., Goetheer E., Khotimsky V., Volkov A. (2011) Gas/liquid membrane contactors based on disubstituted polyacetylene for CO2 absorption liquid regeneration at high pressure and temperature, J. Membr. Sci. 383, 241–249. [CrossRef] [Google Scholar]
  • Bermeshev M.V., Gringolts M.L., Starannikova L.E., Volkov A.V., Finkelstein E.Sh. (2010) New Membrane Materials via Catalytic Polymerization of Bis(Trimethylsilyl)-Substituted Norbornene Type Monomers in Book “New Smart Materials via Metal Mediated Macromolecular Engineering”, Khosravi E., Yagci Yu, Savelyev Yu (eds), pp. 319–326. [Google Scholar]
  • Finkelshtein E.Sh., Bermeshev M.V., Grongolts M.L., Starannikova L.E., Yampolskii Yu.P. (2011) Substituted polynorbornenes as promising materials for gas separation membranes, Russ. Chem. Rev. 80, 341–361. [CrossRef] [Google Scholar]
  • Gringolts M., Bermeshev M., Yampolskii Yu., Starannikova L., Shantarovich V., Finkelshtein E. (2010) New high permeable addition poly(tricyclononenes) with Si(CH3)3 side groups: synthesis, gas permeation parameters, and free volume, Macromolecules 43, 7165–7172. [CrossRef] [Google Scholar]
  • Robeson L.M. (2008) The upper bound revisited, J. Membr. Sci. 320, 390–400. [CrossRef] [Google Scholar]
  • Starannikova L., Khodzhaeva V., Yampolskii Yu (2004) Mechanism of aging of poly[1-(trimethylsilyl)-1-propyne] and its effect on gas permeability, J. Membr. Sci. 244, 183–191. [CrossRef] [Google Scholar]
  • Nagai K., Sugawara A., Kazama S., Freeman B.D. (2004) Effects of physical aging on solubility, diffusivity, and permeability of propane and n-butane in poly(4-methyl-2-pentyne), J. Polymer Sci. Part B 42, 2407–2418. [CrossRef] [Google Scholar]
  • Takada K., Matsuya H., Masuda T., Higashimura T. (1985) Gas permeability of polyacetylenes carrying substituents, J. Appl. Polymer Sci. 30, 1605–1616. [CrossRef] [Google Scholar]
  • Tasaka S., Inagaki N., Igawa M. (1991) Effect of annealing on structure and permeability of poly[1-(trimethylsilyl)-1-propyne, J. Polymer Sci., Part B 29, 691–694. [CrossRef] [Google Scholar]
  • Finkelshtein E.Sh., Makovetskii K.L., Gringolts M.L., Rogan Yu.V., Golenko T.G., Starannikova L.E., Yampolskii Yu.P., Shantarovich V.P., Suzuki T. (2006) Addition-type polynorbornenes with Si(CH3)3 side groups: synthesis, gas permeability, and free volume, Macromolecules 39, 7022–7029. [CrossRef] [Google Scholar]
  • Simons K., Nijmeijer K., Wessling M. (2009) Gas-liquid contactors for CO2 removal, J. Membr. Sci. 340, 214–220. [CrossRef] [Google Scholar]
  • Jamal A., Meisen A., Lim C.J. (2006) Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor—II: Experimental results and parameter estimation, Chem. Eng. Sci. 61, 6590–6603. [CrossRef] [Google Scholar]
  • Kierzkowska-Pawlaka H. (2010) Carbon Dioxide Removal from Flue Gases by Absorption/Desorption in Aqueous Diethanolamine Solutions, J. Air Waste Manage. Assoc. 60, 925–931. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.