Dossier: Post Combustion CO2 Capture
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 6, November-December 2014
Dossier: Post Combustion CO2 Capture
Page(s) 1059 - 1068
Published online 15 November 2013
  • Qi Z., Cussler E.L. (1985) Microporous hollow fibers for gas absorption. Part 1: Mass transfer in the liquid, J. Membr. Sci. 23, 321–332. [CrossRef] [Google Scholar]
  • Qi Z., Cussler E.L. (1985) Microporous hollow fibers for gas absorption. Part 2: Mass transfer across the membrane, J. Membr. Sci. 23, 333–345. [CrossRef] [Google Scholar]
  • Gabelman A., Hwang S.T. (1999) Hollow fiber membrane contactors, J. Membr. Sci. 159, 61–106. [Google Scholar]
  • de Montigny D., Tontiwachwuthikul P., Chakma A. (2005) Comparing the absorption performance of packed columns and membrane contactors, Ind. Eng. Chem. Res. 44, 5726–5732. [CrossRef] [Google Scholar]
  • Karoor S., Sirkar K.K. (1993) Gas absorption studies in microporous hollow fiber membrane modules, Ind. Eng. Chem. Res. 32, 674–684. [CrossRef] [Google Scholar]
  • Falk-Pedersen O., Dannstrom H. (1997) Separation of carbon dioxide from offshore gas turbine exhaust, Energy Convers. Manag. 38, S81–S86. [CrossRef] [Google Scholar]
  • Feron P.H.M., Jansen A.E. (1995) Capture of carbon dioxide using membrane gas absorption and reuse in the horticultural industry, Energy Convers. Manag. 36, 411–414. [Google Scholar]
  • Klaassen R., Feron P., Jansen A. (2008) Membrane contactor applications, Desalination 224, 81–87. [CrossRef] [Google Scholar]
  • Li J.L., Chen B.-H. (2005) Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors, Sep. Purif. Technol. 41, 109–122. [Google Scholar]
  • Mansourizadeh A., Ismail A.F. (2009) Hollow fiber gas-liquid membrane contactors for acid gas capture: A review, J. hazardous Materials 171, 38–53. [Google Scholar]
  • Rangwala H.A. (1996) Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors, J. Membr. Sci. 112, 229–240. [CrossRef] [Google Scholar]
  • Yang H., Xu Z., Fan M., Gupta R., Slimane R.B., Bland A.E., Wright I. (2008) Progress in carbon dioxide separation and capture: A review, J. Environ. Sci. 20, 14–27. [Google Scholar]
  • Marzouk S.A.M., Al-Marzouqi M.H., El-Naas M.H., Abdullatif N., Ismail Z.M. (2010) Removal of carbon dioxide from pressurized CO2–CH4 gas mixture using hollow fiber membrane contactors, J. Membr. Sci. 351, 21–27. [CrossRef] [Google Scholar]
  • Wang R., Zhang H.Y., Feron P.H.M., Liang D.T. (2005) Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors, Sep. Purifi. Technol. 46, 33–40. [CrossRef] [Google Scholar]
  • Lu J.G., Zheng Y.F., Cheng M.D. (2008) Wetting mechanism in mass transfer process of hydrophobic membrane gas absorption, J. Membr. Sci. 308, 180–190. [CrossRef] [Google Scholar]
  • Rongwong W., Jiraratananon R., Atchariyawut S. (2009) Experimantal study on membrane wetting in gas-liquid membrane contacting process for CO2 absorption by single and mixed absorbents, Sep. Purifi. Technol. 69, 118–125. [CrossRef] [Google Scholar]
  • Zhang H.Y., Wang R., Liang D.T., Tay J.H. (2008) Theoretical and experimental studies of membrane wetting in the membrane gas-liquid contacting process for CO2 absorption, J. Membr. Sci. 308, 162–170. [CrossRef] [Google Scholar]
  • Li K., Teo W.K. (1998) Use of permeation and absorption methods for CO2 removal in hollow fiber membrane modules, Sep. Purifi. Technol. 13, 79–88. [CrossRef] [Google Scholar]
  • Li K., Teo W.K. (1996) An ultraskin skinned hollow fibre module for gas absorption at elevated pressures, Trans. IChemE 74, 856–862. [CrossRef] [Google Scholar]
  • Al-Saffar H.B., Ozturk B., Hughes R. (1997) A comparison of porous and non-porous gas-liquid membrane contactors for gas separation, Trans. IChemE 75, 685–692. [CrossRef] [Google Scholar]
  • Feron P.H.M., Volkov V.V., Khotimsky V.S., Teplyakov V.V. (2006) Membrane gaz separation, WO2006004400. [Google Scholar]
  • Teplyakov V.V., Gassanova L.G., Sostina E.G., Slepova E.V., Modigell M., Netrusov A.I. (2002) Lab-scale bioreactor integrated with active membrane system for hydrogen production: experience and prospects, Int. J. Hydrogen Energy 27, 1149–1155. [CrossRef] [Google Scholar]
  • Bessarabov D.G., Jacobs E.P., Sanderson R.D., Beckman I.N. (1996) Use of nonporous polymeric flat-sheet gas-separation membranes in a membrane-liquid contactor: experimental studies, J. Membr. Sci. 113, 275–284. [CrossRef] [Google Scholar]
  • Trusov A., Legkov S., van den Broeke L.J.P., Goetheer E., Khotimsky V., Volkov A. (2011) Gas/liquid membrane contactors based on disubstituted polyacetylene for CO2 absorption liquid regeneration at high pressure and temperature, J. Membr. Sci. 383, 241–249. [CrossRef] [Google Scholar]
  • Bermeshev M.V., Gringolts M.L., Starannikova L.E., Volkov A.V., Finkelstein E.Sh. (2010) New Membrane Materials via Catalytic Polymerization of Bis(Trimethylsilyl)-Substituted Norbornene Type Monomers in Book “New Smart Materials via Metal Mediated Macromolecular Engineering”, Khosravi E., Yagci Yu, Savelyev Yu (eds), pp. 319–326. [Google Scholar]
  • Finkelshtein E.Sh., Bermeshev M.V., Grongolts M.L., Starannikova L.E., Yampolskii Yu.P. (2011) Substituted polynorbornenes as promising materials for gas separation membranes, Russ. Chem. Rev. 80, 341–361. [CrossRef] [Google Scholar]
  • Gringolts M., Bermeshev M., Yampolskii Yu., Starannikova L., Shantarovich V., Finkelshtein E. (2010) New high permeable addition poly(tricyclononenes) with Si(CH3)3 side groups: synthesis, gas permeation parameters, and free volume, Macromolecules 43, 7165–7172. [CrossRef] [Google Scholar]
  • Robeson L.M. (2008) The upper bound revisited, J. Membr. Sci. 320, 390–400. [CrossRef] [Google Scholar]
  • Starannikova L., Khodzhaeva V., Yampolskii Yu (2004) Mechanism of aging of poly[1-(trimethylsilyl)-1-propyne] and its effect on gas permeability, J. Membr. Sci. 244, 183–191. [CrossRef] [Google Scholar]
  • Nagai K., Sugawara A., Kazama S., Freeman B.D. (2004) Effects of physical aging on solubility, diffusivity, and permeability of propane and n-butane in poly(4-methyl-2-pentyne), J. Polymer Sci. Part B 42, 2407–2418. [CrossRef] [Google Scholar]
  • Takada K., Matsuya H., Masuda T., Higashimura T. (1985) Gas permeability of polyacetylenes carrying substituents, J. Appl. Polymer Sci. 30, 1605–1616. [CrossRef] [Google Scholar]
  • Tasaka S., Inagaki N., Igawa M. (1991) Effect of annealing on structure and permeability of poly[1-(trimethylsilyl)-1-propyne, J. Polymer Sci., Part B 29, 691–694. [CrossRef] [Google Scholar]
  • Finkelshtein E.Sh., Makovetskii K.L., Gringolts M.L., Rogan Yu.V., Golenko T.G., Starannikova L.E., Yampolskii Yu.P., Shantarovich V.P., Suzuki T. (2006) Addition-type polynorbornenes with Si(CH3)3 side groups: synthesis, gas permeability, and free volume, Macromolecules 39, 7022–7029. [CrossRef] [Google Scholar]
  • Simons K., Nijmeijer K., Wessling M. (2009) Gas-liquid contactors for CO2 removal, J. Membr. Sci. 340, 214–220. [CrossRef] [Google Scholar]
  • Jamal A., Meisen A., Lim C.J. (2006) Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor—II: Experimental results and parameter estimation, Chem. Eng. Sci. 61, 6590–6603. [CrossRef] [Google Scholar]
  • Kierzkowska-Pawlaka H. (2010) Carbon Dioxide Removal from Flue Gases by Absorption/Desorption in Aqueous Diethanolamine Solutions, J. Air Waste Manage. Assoc. 60, 925–931. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.